Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (7): 1238-1248.DOI: 10.1007/s40195-024-01694-0
Previous Articles Next Articles
Guan-Cheng Gu1, Zhao-Jing Han1, Ze-Yu Chen1, Zhao-Xuan Li1, Sheng-Bao Xia1, Zheng-Ning Li1, Hua Jin1(), Wei-Wei Xu1(
), Xing-Jun Liu2
Received:
2023-10-18
Revised:
2023-12-27
Accepted:
2024-02-20
Online:
2024-04-17
Published:
2024-04-17
Contact:
Hua Jin, Wei-Wei Xu
Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248.
Add to citation manager EndNote|Ris|BibTeX
Materials | Source | Structure | State | Tc (K) | a (Å)* | c (Å)* | B (GPa)# |
---|---|---|---|---|---|---|---|
Al | This work | FCC | NM | 3.990 | 77.7 | ||
Expt. [33, 34] | 3.960 | 73.6 | |||||
Ti | This work | HCP | NM | 2.997 | 4.894 | 108.7 | |
Expt. [33, 34] | 2.950 | 4.683 | 107.2 | ||||
V | This work | BCC | NM | 2.997 | 170.2 | ||
Expt. [33, 34] | 3.028 | 165.1 | |||||
Cr | This work | BCC | PM | 77 | 2.863 | 198.9 | |
Expt. [33, 34] | 2.879 | 194.0 | |||||
Co | This work | HCP | FM | 1514 | 2.563 | 4.185 | 213.7 |
Expt. [33, 34] | 2.500 | 4.081 | 195.2 | ||||
Ni | This work | FCC | FM | 609 | 3.527 | 193.0 | |
Expt. [33, 34] | 3.517 | 190.0 | |||||
Zr | This work | HCP | NM | 3.309 | 5.404 | 87.6 | |
Expt. [33, 34] | 3.231 | 5.148 | 85.0 | ||||
Nb | This wok | BCC | NM | 3.308 | 159.6 | ||
Expt. [33, 34] | 3.294 | 173.6 | |||||
Mo | This work | BCC | NM | 3.163 | 247.7 | ||
Expt. [33, 34] | 3.141 | 277.9 | |||||
Ru | This work | HCP | NM | 2.779 | 4.538 | 300.2 | |
Expt. [33, 34] | 2.700 | 4.273 | 327.1 | ||||
Ta | This work | BCC | NM | 3.325 | 188.8 | ||
Expt. [33, 34] | 3.291 | 204.0 | |||||
W | This work | BCC | NM | 3.192 | 291.0 | ||
Expt. [33, 34] | 3.159 | 329.6 | |||||
Re | This work | HCP | NM | 2.858 | 4.667 | 350.1 | |
Expt. [33, 34] | 2.760 | 4.458 | 379.0 | ||||
Co3Al | This work | L12 | FM | 421 | 3.584 | 182.9 | |
Calc. [35] | 3.574 | 188.2 | |||||
Co3(Al, Nb) | This work | L12 | FM | 328 | 3.612 | 191.6 | |
Expt. [14] | 3.644 |
Table 1 Structure, lattice parameters (a and c, in units of Å), Curie temperature Tc (K), and bulk modulus B (GPa) for selected elements at room temperature, together with the available data from experiments [14,33,34] and other calculations [35]
Materials | Source | Structure | State | Tc (K) | a (Å)* | c (Å)* | B (GPa)# |
---|---|---|---|---|---|---|---|
Al | This work | FCC | NM | 3.990 | 77.7 | ||
Expt. [33, 34] | 3.960 | 73.6 | |||||
Ti | This work | HCP | NM | 2.997 | 4.894 | 108.7 | |
Expt. [33, 34] | 2.950 | 4.683 | 107.2 | ||||
V | This work | BCC | NM | 2.997 | 170.2 | ||
Expt. [33, 34] | 3.028 | 165.1 | |||||
Cr | This work | BCC | PM | 77 | 2.863 | 198.9 | |
Expt. [33, 34] | 2.879 | 194.0 | |||||
Co | This work | HCP | FM | 1514 | 2.563 | 4.185 | 213.7 |
Expt. [33, 34] | 2.500 | 4.081 | 195.2 | ||||
Ni | This work | FCC | FM | 609 | 3.527 | 193.0 | |
Expt. [33, 34] | 3.517 | 190.0 | |||||
Zr | This work | HCP | NM | 3.309 | 5.404 | 87.6 | |
Expt. [33, 34] | 3.231 | 5.148 | 85.0 | ||||
Nb | This wok | BCC | NM | 3.308 | 159.6 | ||
Expt. [33, 34] | 3.294 | 173.6 | |||||
Mo | This work | BCC | NM | 3.163 | 247.7 | ||
Expt. [33, 34] | 3.141 | 277.9 | |||||
Ru | This work | HCP | NM | 2.779 | 4.538 | 300.2 | |
Expt. [33, 34] | 2.700 | 4.273 | 327.1 | ||||
Ta | This work | BCC | NM | 3.325 | 188.8 | ||
Expt. [33, 34] | 3.291 | 204.0 | |||||
W | This work | BCC | NM | 3.192 | 291.0 | ||
Expt. [33, 34] | 3.159 | 329.6 | |||||
Re | This work | HCP | NM | 2.858 | 4.667 | 350.1 | |
Expt. [33, 34] | 2.760 | 4.458 | 379.0 | ||||
Co3Al | This work | L12 | FM | 421 | 3.584 | 182.9 | |
Calc. [35] | 3.574 | 188.2 | |||||
Co3(Al, Nb) | This work | L12 | FM | 328 | 3.612 | 191.6 | |
Expt. [14] | 3.644 |
Phase | TM | L12 structure | D019 structure | B2 structure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tc | a | B | Tc | a | c | B | Tc | a | B | ||
(Co, Ni)3(Al, Nb, TM) | free | 312 | 3.541 | 191.0 | 287 | 5.118 | 4.105 | 187.4 | 397 | 2.880 | 168.2 |
Ti | 292 | 3.546 | 202.6 | 271 | 5.122 | 4.108 | 188.6 | 384 | 2.885 | 175.5 | |
V | 278 | 3.541 | 203.9 | 265 | 5.115 | 4.103 | 191.8 | 383 | 2.881 | 177.8 | |
Cr | 288 | 3.538 | 203.7 | 285 | 5.111 | 4.099 | 192.7 | 394 | 2.881 | 179.0 | |
Zr | 305 | 3.558 | 190.6 | 105 | 5.142 | 4.125 | 188.4 | 384 | 2.900 | 175.6 | |
Mo | 262 | 3.547 | 199.6 | 246 | 5.125 | 4.110 | 193.5 | 373 | 2.888 | 180.6 | |
Ru | 268 | 3.543 | 195.8 | 254 | 5.120 | 4.107 | 191.1 | 414 | 2.885 | 183.2 | |
Ta | 275 | 3.553 | 198.3 | 259 | 5.133 | 4.117 | 192.8 | 376 | 2.892 | 179.2 | |
W | 262 | 3.550 | 201.3 | 244 | 5.127 | 4.112 | 195.2 | 371 | 2.889 | 181.8 | |
Re | 246 | 3.547 | 201.9 | 234 | 5.123 | 4.109 | 196.3 | 377 | 2.888 | 183.0 |
Table 2 Calculated physical properties of the TM-doped (Co, Ni)3(Al, Nb) phase in L12, D019, and B2 structures, including lattice parameters (a and c) (Å), Curie temperature Tc (K), and bulk modulus B (GPa)
Phase | TM | L12 structure | D019 structure | B2 structure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tc | a | B | Tc | a | c | B | Tc | a | B | ||
(Co, Ni)3(Al, Nb, TM) | free | 312 | 3.541 | 191.0 | 287 | 5.118 | 4.105 | 187.4 | 397 | 2.880 | 168.2 |
Ti | 292 | 3.546 | 202.6 | 271 | 5.122 | 4.108 | 188.6 | 384 | 2.885 | 175.5 | |
V | 278 | 3.541 | 203.9 | 265 | 5.115 | 4.103 | 191.8 | 383 | 2.881 | 177.8 | |
Cr | 288 | 3.538 | 203.7 | 285 | 5.111 | 4.099 | 192.7 | 394 | 2.881 | 179.0 | |
Zr | 305 | 3.558 | 190.6 | 105 | 5.142 | 4.125 | 188.4 | 384 | 2.900 | 175.6 | |
Mo | 262 | 3.547 | 199.6 | 246 | 5.125 | 4.110 | 193.5 | 373 | 2.888 | 180.6 | |
Ru | 268 | 3.543 | 195.8 | 254 | 5.120 | 4.107 | 191.1 | 414 | 2.885 | 183.2 | |
Ta | 275 | 3.553 | 198.3 | 259 | 5.133 | 4.117 | 192.8 | 376 | 2.892 | 179.2 | |
W | 262 | 3.550 | 201.3 | 244 | 5.127 | 4.112 | 195.2 | 371 | 2.889 | 181.8 | |
Re | 246 | 3.547 | 201.9 | 234 | 5.123 | 4.109 | 196.3 | 377 | 2.888 | 183.0 |
Fig. 1 a Formation energy Hf value of γʹ phase in D019 and L12 structures before and after doping (with the energy of B2 as the reference state) and b increment ratio (δ) of ΔH values as: δ = (ΔHfree−ΔHTM)/ΔHfree where ΔHfree and ΔHTM are the energy different for doping-free and TM-doped cases
Fig. 2 a Total and b partial density of states (DOS) for doping-free and V-doped phases in D019 and L12 structures. Note that the fermi level is labeled as EF
Phase | TM | Source | C11 | C12 | C44 | B | G | E | ν | AU | Hv |
---|---|---|---|---|---|---|---|---|---|---|---|
Ni3Al | - | This work | 212.7 | 163.9 | 142.6 | 180.2 | 71.9 | 190.4 | 0.32 | 4.8 | 5.3 |
- | Expt. [39] | 224.0 | 148.0 | 125.0 | 173.3 | 77.7 | 202.9 | 0.31 | - | - | |
- | Calc. [40] | 232.7 | 151.4 | 120.6 | 178.5 | 78.1 | 204.4 | 0.31 | - | - | |
(Co, Ni)3(Al, Nb, TM) | free | This work | 284.7 | 144.1 | 166.8 | 191.0 | 117.9 | 293.4 | 0.24 | 1.0 | 15.5 |
Ti | This work | 304.8 | 151.6 | 165.6 | 202.6 | 121.5 | 303.8 | 0.25 | 0.7 | 15.2 | |
V | This work | 312.3 | 149.7 | 168.5 | 203.9 | 125.8 | 313.0 | 0.24 | 0.7 | 16.2 | |
Cr | This work | 310.3 | 150.5 | 168.3 | 203.7 | 124.8 | 311.0 | 0.25 | 0.7 | 16.0 | |
Zr | This work | 290.1 | 140.8 | 162.5 | 190.6 | 118.9 | 295.3 | 0.24 | 0.8 | 15.8 | |
Mo | This work | 315.4 | 141.7 | 169.0 | 199.6 | 129.4 | 319.2 | 0.23 | 0.6 | 17.7 | |
Ru | This work | 306.3 | 140.6 | 169.9 | 195.8 | 127.3 | 314.0 | 0.23 | 0.6 | 17.6 | |
Ta | This work | 308.5 | 143.2 | 167.4 | 198.3 | 126.1 | 312.2 | 0.24 | 0.6 | 17.0 | |
W | This work | 318.4 | 142.7 | 169.7 | 201.3 | 130.3 | 321.4 | 0.23 | 0.5 | 17.8 | |
Re | This work | 322.2 | 141.7 | 171.0 | 201.9 | 132.3 | 325.7 | 0.23 | 0.5 | 18.3 |
Table 3 Calculated elastic constants Cij (i.e., C11, C12, and C44) (GPa), and the corresponding aggregate properties of bulk (B), shear (G) and Young’s (E) moduli (GPa), Poisson’s ratio (ν), AU and Hardness (Hv) for L12 (Co, Ni)3(Al, Nb, TM) phases, together with available data from experimental [39] and theoretical [40] results
Phase | TM | Source | C11 | C12 | C44 | B | G | E | ν | AU | Hv |
---|---|---|---|---|---|---|---|---|---|---|---|
Ni3Al | - | This work | 212.7 | 163.9 | 142.6 | 180.2 | 71.9 | 190.4 | 0.32 | 4.8 | 5.3 |
- | Expt. [39] | 224.0 | 148.0 | 125.0 | 173.3 | 77.7 | 202.9 | 0.31 | - | - | |
- | Calc. [40] | 232.7 | 151.4 | 120.6 | 178.5 | 78.1 | 204.4 | 0.31 | - | - | |
(Co, Ni)3(Al, Nb, TM) | free | This work | 284.7 | 144.1 | 166.8 | 191.0 | 117.9 | 293.4 | 0.24 | 1.0 | 15.5 |
Ti | This work | 304.8 | 151.6 | 165.6 | 202.6 | 121.5 | 303.8 | 0.25 | 0.7 | 15.2 | |
V | This work | 312.3 | 149.7 | 168.5 | 203.9 | 125.8 | 313.0 | 0.24 | 0.7 | 16.2 | |
Cr | This work | 310.3 | 150.5 | 168.3 | 203.7 | 124.8 | 311.0 | 0.25 | 0.7 | 16.0 | |
Zr | This work | 290.1 | 140.8 | 162.5 | 190.6 | 118.9 | 295.3 | 0.24 | 0.8 | 15.8 | |
Mo | This work | 315.4 | 141.7 | 169.0 | 199.6 | 129.4 | 319.2 | 0.23 | 0.6 | 17.7 | |
Ru | This work | 306.3 | 140.6 | 169.9 | 195.8 | 127.3 | 314.0 | 0.23 | 0.6 | 17.6 | |
Ta | This work | 308.5 | 143.2 | 167.4 | 198.3 | 126.1 | 312.2 | 0.24 | 0.6 | 17.0 | |
W | This work | 318.4 | 142.7 | 169.7 | 201.3 | 130.3 | 321.4 | 0.23 | 0.5 | 17.8 | |
Re | This work | 322.2 | 141.7 | 171.0 | 201.9 | 132.3 | 325.7 | 0.23 | 0.5 | 18.3 |
Fig. 3 Increment ratio per atom (ΔX) of a elastic constants (Cij) and b aggregate properties of Bulk (B), Shear (G), and Young’s (E) moduli for the TM-doped (Co, Ni)3(Al, Nb) phase. Herein, ΔX = (XTM−Xfree)/Xfree where Xfree and XTM are the elastic properties (X: Cij, B, G, and E))
Fig. 5 Increment ratio maps of a formation energies ΔH(δ) and b-d mechanical properties of B/G ratio (ΔB/G), Young’s modulus E (ΔE), and hardness Hv (ΔHv) as a function of V and Cr contents
Fig. 6 Increment ratio maps of a formation energies ΔH(δ) and b-d mechanical properties of B/G ratio (ΔB/G), Young’s modulus E (ΔE), and hardness Hv (ΔHv) as a function of V and Ta contents
[1] | C. Walter, B. Hallstedt, N. Warnken, Mater. Sci. Eng. A 397, 385 (2005) |
[2] | H. Long, Y. Liu, D. Kong, H. Wei, Y. Chen, S. Mao, J. Alloy. Compd. 724, 287 (2017) |
[3] | X.T. Lian, J.L. An, L. Wang, H. Dong, Acta Metall. Sin. -Engl. Lett. 35, 1895 (2022) |
[4] | M.M. Attallah, R. Jennings, X. Wang, L.N. Carter, MRS Bull. 41, 758 (2016) |
[5] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312, 90 (2006)
PMID |
[6] | T. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, JOM 62, 58 (2010) |
[7] | X.J. Liu, Y.C. Chen, Y. Lu, Acta Metall. Sin. 56, 1 (2020) |
[8] | W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, Acta Mater. 61, 5437 (2013) |
[9] | S.K. Makineni, B. Nithin, K. Chattopadhyay, Acta Mater. 85, 85 (2015) |
[10] | S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, K. Chattopadhyay, Acta Mater. 97, 29 (2015) |
[11] |
P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, K. Chattopadhyay, Acta Mater. 163, 140 (2019)
DOI |
[12] | Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, X. Liu, Acta Mater. 170, 62 (2019) |
[13] | Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, X. Liu, Acta Mater. 188, 652 (2020) |
[14] | B.X. Cao, W.W. Xu, C.Y. Yu, S.W. Wu, H.J. Kong, Z.Y. Ding, T.L. Zhang, J.H. Luan, B. Xiao, Z.B. Jiao, Y. Liu, T. Yang, C.T. Liu, Acta Mater. 229, 117763 (2022) |
[15] | W.W. Xu, Z.Y. Xiong, X.G. Gong, G.H. Yin, L.J. Chen, C.P. Wang, X.J. Liu, Materials 18, 101171 (2021) |
[16] | W.W. Xu, In advanced multicomponent alloys: from fundamentals to applications (Springer, Berlin, 2022), p.155 |
[17] | R. Baldan, C. Nunes, M. Barboza, A. Costa, R. Bogado, G. Coelho, in Int. Conf. Adv. Mater. SBPMat (2009) |
[18] | L. Vitos, Phys. Rev. B 64, 014107 (2001) |
[19] | L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87, 156401 (2001) |
[20] | P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) |
[21] | L. Vitos, Computational quantum mechanics for materials engineers: the EMTO method and applications (Springer, Berlin, 2007) |
[22] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[23] | B. Gyorffy, A. Pindor, J. Staunton, G. Stocks, H. Winter, J. Phys. F: Met. Phys. 15, 1337 (1985) |
[24] | P. Soven, Phys. Rev. 156, 809 (1967) |
[25] | B.L. Gyorffy, Phys. Rev. B 5, 2382 (1972) |
[26] | H. Wang, M. Li, Phys. Rev. B 79, 224102 (2009) |
[27] | L.Y. Tian, Q.M. Hu, R. Yang, J. Zhao, B. Johansson, L. Vitos, J. Phys. Condens. Matter 27, 315702 (2015) |
[28] | M.J. Mehl, Phys. Rev. B 47, 2493 (1993) |
[29] |
V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988)
PMID |
[30] | D.H. Chung, Philos. Mag. 8, 833 (1963) |
[31] | R. Hill, J. Mech. Phys. Solids 11, 357 (1963) |
[32] | X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011) |
[33] | W. Pearson, A handbook of lattice spacings and structures of metals and alloys, 123 (1958) |
[34] | K.A. Gschneidner, Solid State Phys. 16, 275 (1964) |
[35] | W.W. Xu, J.J. Han, Z.W. Wang, C.P. Wang, Y.H. Wen, X.J. Liua, Z.Z. Zhu, Intermetallics 32, 303 (2013) |
[36] | Y. Tange, Y. Kuwayama, T. Irifune, K.I. Funakoshi, Y. Ohishi, J. Geophys. Res. Solid Earth 117, B06201 (2012) |
[37] | D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100, 90 (2015) |
[38] | R. Hoffmann, Rev. Mod. Phys. 60, 601 (1988) |
[39] | F. Kayser, C. Stassis, Phys. Status Solidi A 64, 335 (1981) |
[40] | W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, Z.K. Liu, Mater. Des. 142, 139 (2018) |
[41] | M. Jin, N. Miao, W. Zhao, J. Zhou, Q. Du, Z. Sun, Comput. Mater. Sci. 148, 27 (2018) |
[1] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[2] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[3] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[4] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[5] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[6] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[7] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[8] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[9] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[10] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[11] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[12] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[13] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
[14] | Lu Xiao, Ting-Ting Liu, Yue Chu, Bo Song, Jie Zhao, Xian-Hua Chen, Kai-Hong Zheng, Fu-Sheng Pan. Effect of Ti Particles on the Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 513-524. |
[15] | Jin-Kai Zhang, Cui-Ju Wang, Yi-Dan Fan, Chao Xu, Kai-Bo Nie, Kun-Kun Deng. Effect of Tip Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 551-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||