Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (4): 607-619.DOI: 10.1007/s40195-023-01653-1
Previous Articles Next Articles
Andrea Kellenberger1(), Nicolae Vaszilcsin1(
), Mircea Laurentiu Dan1(
), Ion Mitelea2(
), Alexandru Adrian Geana2(
), Sigrid Lædre3(
), Corneliu M. Craciunescu2
Received:
2023-09-14
Revised:
2023-11-07
Accepted:
2023-12-04
Online:
2024-04-10
Published:
2024-01-28
Contact:
Mircea Laurentiu Dan, mircea.dan@upt.ro;Andrea Kellenberger, andrea.kellenberger@upt.ro;Nicolae Vaszilcsin, nicolae.vaszilcsin@upt.ro;Ion Mitelea, ion.mitelea@upt.ro;Alexandru Adrian Geana, alexandru.adrian.geana@gmail.com;Sigrid Lædre, sigrid.ladre@sintef.no
Andrea Kellenberger, Nicolae Vaszilcsin, Mircea Laurentiu Dan, Ion Mitelea, Alexandru Adrian Geana, Sigrid Lædre, Corneliu M. Craciunescu. Corrosion Investigation by Scanning Electrochemical Microscopy of AISI 446 and Ti-Coated AISI 446 Ferritic Stainless Steel as Potential Material for Bipolar Plate in PEMWE[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 607-619.
Add to citation manager EndNote|Ris|BibTeX
Stainless steel | C | Cr | Mn | Si | Al | P | S | N | Fe |
---|---|---|---|---|---|---|---|---|---|
AISI 446 | 0.14 | 24.90 | 1.08 | 0.72 | - | 0.032 | 0.026 | 0.18 | Bal. |
AISI 446 standard | ≤ 0.20 | 23.00-27.00 | ≤ 1.50 | ≤ 1.00 | - | ≤ 0.040 | ≤ 0.030 | ≤ 0.25 | Bal. |
Table 1 Elemental composition of tested and standard AISI 446 stainless steel
Stainless steel | C | Cr | Mn | Si | Al | P | S | N | Fe |
---|---|---|---|---|---|---|---|---|---|
AISI 446 | 0.14 | 24.90 | 1.08 | 0.72 | - | 0.032 | 0.026 | 0.18 | Bal. |
AISI 446 standard | ≤ 0.20 | 23.00-27.00 | ≤ 1.50 | ≤ 1.00 | - | ≤ 0.040 | ≤ 0.030 | ≤ 0.25 | Bal. |
Fig. 1 SEM image of the Ti film deposited on the surface of the AISI 446 ferritic stainless steel a; thickness measurement of the Ti layer with the Dektak II profilometer showing a thickness of about 5675 Å b
Fig. 3 Schematic representation of the reaction model for AISI 446 during SECM measurement in the feedback mode, in the presence of ferricyanide redox mediator, depending on the tip-substrate distance
Fig. 5 SECM normalized Z-approach curves measured on the 25 μm Pt tip above: a the uncoated AISI 446 and b the Ti-coated AISI 446 substrate. Conditions: 0.1 M Na2SO4 and 0.1 M KCl solutions with 5 mM K3Fe(CN)6, tip potential Etip = − 0.25 V vs. Ag/AgCl, sample potential, Esample = OCP, scan velocity 50 μm/s, step size 10 μm
Fig. 6 SECM area scans obtained in: a 0.1 M Na2SO4 + 5 mM K3Fe(CN)6 solution and b 0.1 M KCl + 5 mM K3Fe(CN)6 solution, with the Pt tip placed at a large distance away from the AISI 446 substrate and at 20 μm distance from AISI 446. Conditions: tip potential Etip = − 0.25 V vs. Ag/AgCl, sample potential Esample = OCP, scan velocity 50 μm/s, step size 50 μm. Feedback mode
Fig. 8 SECM line scans obtained in 0.1 M Na2SO4 at 20 μm distance from the substrate: a, b AISI 446 and c, d Ti-coated AISI446. Probe current (left) and sample current (right) were simultaneously recorded at different potentials of the substrate. Conditions: tip potential Etip = 0.6 V vs. Ag/AgCl, scan velocity 50 μm/s, step size 25 μm. Substrate generation-tip collection mode
Fig. 9 SECM area scan of uncoated AISI 446 in 0.1 M Na2SO4 solution with the tip biased at E = 0.6 V and the AISI 446 substrate at a OCP, b 0.2 V vs. Ag/AgCl, c 0.5 V vs. Ag/AgCl and d 1.0 V vs. Ag/AgCl. Conditions: substrate tip distance is 20 µm, scan velocity 50 μm/s, step size 50 μm. Substrate generation-tip collection mode
Fig. 10 SECM area scan of Ti-coated AISI 446 in 0.1 M Na2SO4 solution with the tip biased at E = 0.6 V and the Ti-AISI 446 substrate at a OCP, b 0.2 V vs. Ag/AgCl, c 0.5 V vs. Ag/AgCl and d 1.2 V vs. Ag/AgCl. Conditions: substrate tip distance is 20 µm, scan velocity 50 μm/s, step size 50 μm. Substrate generation-tip collection mode
Fig. 11 SECM line scans of uncoated AISI 446 in 0.1 M KCl solution with the tip biased at E = 0.6 V and the AISI 446 substrate at a OCP and b polarized at 0.2 V vs. Ag/AgCl. Conditions: substrate tip distance is 20 µm, scan velocity 50 μm/s, step size 25 μm. Substrate generation-tip collection mode
Fig. 12 SECM area scan of uncoated AISI 446 in 0.1 M KCl solution with the tip biased at E = 0.6 V and the AISI 446 substrate at a OCP and b polarized at 0.2 V vs. Ag/AgCl. Conditions: substrate tip distance is 20 µm, scan velocity 50 μm/s, step size 50 μm. Substrate generation-tip collection mode
Fig. 13 SECM area scan of Ti-coated AISI 446 in 0.1 M KCl solution with the tip biased at E = 0.6 V and the Ti-AISI 446 substrate at a OCP, b 0.2 V vs. Ag/AgCl, c 0.5 V vs. Ag/AgCl and d 1.2 V vs. Ag/AgCl. Conditions: substrate tip distance is 20 µm, scan velocity 50 μm/s, step size 50 μm. Substrate generation-tip collection mode
[1] |
G.S. Seck, E. Hache, J. Sabathier, F. Guedes, G.A. Reigstad, J. Straus, O. Wolfgang, J.A. Ouassou, M. Askeland, I. Hjorth, H.I. Skjelbred, L.E. Andersson, S. Douguet, M. Villavicencio, J. Trüby, J. Brauer, C. Cabot, Renew. Sust. Energ. Rev. 167, 112779 (2022)
DOI URL |
[2] |
Y. Zhang, D. Davis, M.J. Brear, J. Clean. Prod. 346, 131082 (2022)
DOI URL |
[3] |
S.S. Garud, F. Tsang, I.A. Karimi, S. Farooq, Energ. Convers. Manag. 286, 117059 (2023)
DOI URL |
[4] |
P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant, Int. J. Hydrogen Energ. 35, 5043 (2010)
DOI URL |
[5] | K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M.S. Hamdy, H. Chen, X. Zou, Nano Re Energ. 1, 9120032 (2022) |
[6] |
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energ. 38, 4901 (2013)
DOI URL |
[7] |
A.S. Gago, S.A. Ansar, B. Saruhan, U. Schultz, P. Lettenmeier, N.A. Cañas, P. Gazdzicki, T. Morawietz, R. Hiesgen, J. Arnold, K.A. Friedrich, J. Power. Sources 307, 815 (2016)
DOI URL |
[8] |
P. Lettenmeier, R. Wang, R. Abouatallah, F. Burggraf, A.S. Gago, K.A. Friedrich, J. Electrochem. Soc.163, F3119 (2016)
DOI |
[9] |
P. Lettenmeier, R. Wang, R. Abouatallah, B. Saruhan, O. Freitag, P. Gazdzicki, T. Morawietz, R. Hiesgen, A.S. Gago, K.A. Friedrich, Sci. Rep. 7, 44035 (2017)
DOI PMID |
[10] |
A. Kellenberger, N. Vaszilcsin, D. Duca, M.L. Dan, N. Duteanu, S. Stiber, T. Morawietz, I. Biswas, S.A. Ansar, P. Gazdzicki, F.J. Wirkert, J. Roth, U. Rost, M. Brodmann, A.S. Gago, K.A. Friedrich, Materials 15, 1628 (2022)
DOI URL |
[11] |
M.L. Dan, A. Kellenberger, D. Duca, N. Vaszilcsin, C.M. Craciunescu, I. Mitelea, A. Ercuta, S. Lædre, T. Khoza, Materials 16, 1501 (2023)
DOI URL |
[12] |
S. Lædre, O.E. Kongstein, A. Oedegaard, H. Karoliussen, F. Seland, Int. J. Hydrogen Energ. 42, 2713 (2017)
DOI URL |
[13] |
N. Rojas, M. Sanchez-Molina, G. Sevilla, E. Amores, E. Almandoz, J. Esparza, M.R. Cruz Vivas, C. Colominas, Int. J. Hydrogen Energ. 46, 25929 (2021)
DOI URL |
[14] |
D.Q. Liu, B. Zhang, G. Zhao, J. Chen, H. Pan, W. Sun, Chinese J. Catal. 47, 93 (2023)
DOI URL |
[15] |
C.H. Ryu, Y. Nam, H.S. Ahn, Chinese J. Catal. 43, 59 (2022)
DOI URL |
[16] |
N.A. Payne, L.I. Stephens, J. Mauzeroll, Corrosion 73, 759 (2017)
DOI URL |
[17] |
Y. Yin, L. Niu, M. Lu, W. Guo, S. Chen, Appl. Surf. Sci. 255, 9193 (2009)
DOI URL |
[18] |
Z. Ye, Z. Zhu, Q. Zhang, X. Liu, J. Zhang, F. Cao, Corros. Sci. 143, 221 (2018)
DOI URL |
[19] |
M. Hampel, M. Schenderlein, C. Schary, M. Dimper, O. Ozcan, Electrochem. Commun. 101, 52 (2019)
DOI |
[20] |
Z. Zhu, Q. Zhang, P. Liu, J. Zhang, F. Cao, J. Electroanal. Chem. 871, 114107 (2020)
DOI URL |
[21] |
J. Izquierdo, L. Martín-Ruíz, B.M. Fernández-Pérez, R. Rodríguez-Raposo, J.J. Santana, R.M. Souto, J. Electroanal. Chem. 728, 148 (2014)
DOI URL |
[22] |
J. Izquierdo, L. Martín-Ruíz, B.M. Fernández-Pérez, L. Fernández-Mérida, J.J. Santana, R.M. Souto, Electrochim. Acta 134, 167 (2014)
DOI URL |
[23] |
H. Wang, J.A. Turner, J. Power. Sources 128, 193 (2004)
DOI URL |
[24] |
M.J. Carmezim, A.M. Simões, M.F. Montemor, M. Da Cunha Belo, Corros. Sci. 47, 581 (2005)
DOI URL |
[25] | Z. Wang, Z.Q. Zhou, L. Zhang, J.Y. Hu, Z.R. Zhang, M.X. Lu, Acta Metall Sin.-Engl. Lett. 32, 585 (2019) |
[26] | Y. Yu, S. Shironita, K. Souma, M. Umeda, Heliyon 4, e00958 (2018) |
[27] |
J.E. Berger, A.M. Jorge Jr. G. Y. Koga, V. Roche, C.S. Kiminami, C. Bolfarini, W.J. Botta, Mater. Charact. 179, 111369 (2021)
DOI URL |
[28] |
N. Aouina, F. Balbaud-Célérier, F. Huet, S. Joiret, H. Perrot, F. Rouillard, V. Vivier, Electrochim. Acta 56, 8589 (2011)
DOI URL |
[29] |
J. Zhou, Y. Zu, A.J. Bard, J. Electroanal. Chem. 491, 22 (2000)
DOI URL |
[30] |
J.S.G. Selva, A. Sukeri, R.P. Bacil, S.H.P. Serrano, M. Bertotti, J. Electroanal. Chem. 934, 117294 (2023)
DOI URL |
[31] |
J.C. Fornaciari, L.C. Weng, S.M. Alia, C. Zhan, T.A. Pham, A.T. Bell, T. Ogitsu, N. Danilovic, A.Z. Weber, Electrochim. Acta 405, 139810 (2022)
DOI URL |
[32] | A. Larsson, A. Grespi, G. Abbondanza, J. Eidhagen, D. Gajdek, K. Simonov, X. Yue, U. Lienert, Z. Hegedüs, A. Jeromin, T.F. Keller, M. Scardamaglia, A. Shavorskiy, L.R. Merte, J. Pan, E. Lundgren, Adv. Mater. 35, 2304621 (2023) |
[33] | D.P. Wang, J.W. Shen, Z. Chen, F.G. Chen, P.Y. Guo, Y.X. Geng, Y.X. Wang, Acta Metall. Sin. -Engl. Lett. 34, 1574 (2021) |
[1] | Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664. |
[2] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
[3] | Jingjing Peng, Jing Liu, Shen Zhang, Zhihui Wang, Xian Zhang, Kaiming Wu. Effects of Environmental Factors on Corrosion Behavior of E690 Steel in Simulated Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 678-694. |
[4] | Hai Zhao, Yi Ding, Wei Gao, Bo Yu, Jinghui Li, Mingya Zhang. Tribological and Corrosion Properties of the CoCrAlYTaSiC-xCNTs Coatings Deposited by Laser Cladding [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 726-738. |
[5] | Yiqi Zhou, Decheng Kong, Ruixue Li, Xing He, Chaofang Dong. Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 587-606. |
[6] | Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498. |
[7] | Liwen Chen, Jianhui Jing, Lulu Zhang, Jing Li, Weipeng Chen, Limin Li, Yuan Zhao, Hua Hou, Yuhong Zhao. Corrosion Behavior of Graphene Nanosheets Reinforced Magnesium Matrix Composites in Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 525-536. |
[8] | J. Sharath Kumar, Rakesh Kumar, Rajeev Verma. Surface Modification Aspects for Improving Biomedical Properties in Implants: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 213-241. |
[9] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[10] | Zhen Zhang, Zhanyong Zhao, Xiaofeng Li, Beibei Wang, Peikang Bai. Effect of Direct Aging on Corrosion Behavior of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 266-282. |
[11] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[12] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[13] | Hongyu Zheng, Xin Gai, Yun Bai, Wentao Hou, Shujun Li, Yulin Hao, R. D. K. Misra, Rui Yang. Influence of Component Size on the Corrosion Behavior of Ti6Al4V Alloy Fabricated by Electron Beam Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 159-168. |
[14] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[15] | W.L. Zhang, W. Li, L.B. Fu, X. Peng, J. Sun, S.M. Jiang, J. Gong, C. Sun. Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na2SO4 + K2SO4 at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1409-1420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||