Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 181-195.DOI: 10.1007/s40195-023-01635-3
Previous Articles Next Articles
Sheng Cao1(), Hongyu Liu1, Jin Jiang2, Ke He1, Binghua Lv1, Hao Zhang3, Lujie Zhang4, Jingrong Meng5, Hao Deng6, Xiaodong Niu1
Received:
2023-09-18
Revised:
2023-09-30
Accepted:
2023-10-09
Online:
2024-01-10
Published:
2023-12-05
Contact:
Sheng Cao, Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Scanning electron microscopy image showing powder particle morphology; b the particle size distribution of the 15-5 PH stainless steel, c the illustration of tensile specimen extraction heights, d the drawing of M10 tensile specimens
Fe | C | Si | Mn | P | Cr | Ni | Cu | Nb | O | N |
---|---|---|---|---|---|---|---|---|---|---|
Bal. | 0.02 | 0.76 | 0.68 | 0.03 | 15.48 | 4.49 | 3.36 | 0.24 | 0.04 | 0.07 |
Table 1 Chemical composition (wt%) of the LPBF fabricated 15-5 PH SS sample
Fe | C | Si | Mn | P | Cr | Ni | Cu | Nb | O | N |
---|---|---|---|---|---|---|---|---|---|---|
Bal. | 0.02 | 0.76 | 0.68 | 0.03 | 15.48 | 4.49 | 3.36 | 0.24 | 0.04 | 0.07 |
Abbreviations | Specimen conditions |
---|---|
AB | As-built condition |
DA | AB + 552 ℃ × 4 h/FC |
STA | AB + 1040 ℃ × 1 h/AC + 552 ℃ × 4 h/FC |
Table 2 Specimen conditions for LPBF fabricated 15-5 PH SS investigated in this study
Abbreviations | Specimen conditions |
---|---|
AB | As-built condition |
DA | AB + 552 ℃ × 4 h/FC |
STA | AB + 1040 ℃ × 1 h/AC + 552 ℃ × 4 h/FC |
Fig. 3 Grain orientation and phase maps on the vertical cross-sections of a top and d bottom of AB specimen; b top and e bottom of DA specimen; c top and f bottom of STA specimen. T and B refer to top and bottom regions. Black boundaries are high angle grain boundaries (HAGB) with a misorientation above 15º. White dashed lines in the grain orientation maps demote the melt pool boundary
Martensite (HAGB) (μm) | Austenite (HAGB) (μm) | |
---|---|---|
AB-T | 1.8 ± 1.3 | 1.3 ± 0.6 |
AB-B | 1.6 ± 1.2 | 1.1 ± 0.4 |
DA-T | 2.1 ± 1.4 | 1.6 ± 0.7 |
DA-B | 1.9 ± 1.4 | 1.2 ± 0.5 |
STA-T | 2.9 ± 2.3 | - |
STA-B | 2.8 ± 2.3 | - |
Table 3 Grain sizes of martensite and austenite in AB, DA, STA conditions at the sample top and bottom
Martensite (HAGB) (μm) | Austenite (HAGB) (μm) | |
---|---|---|
AB-T | 1.8 ± 1.3 | 1.3 ± 0.6 |
AB-B | 1.6 ± 1.2 | 1.1 ± 0.4 |
DA-T | 2.1 ± 1.4 | 1.6 ± 0.7 |
DA-B | 1.9 ± 1.4 | 1.2 ± 0.5 |
STA-T | 2.9 ± 2.3 | - |
STA-B | 2.8 ± 2.3 | - |
Martensite GND density (1015 m−2) | Austenite GND density (1015 m−2) | |
---|---|---|
AB-T | 3.2 ± 1.6 | 2.1 ± 1.8 |
AB-B | 3.9 ± 2.7 | 2.1 ± 1.7 |
DA-T | 3.1 ± 2.6 | 2.1 ± 1.6 |
DA-B | 3.5 ± 3.0 | 2.1 ± 1.9 |
STA-T | 2.1 ± 2.2 | - |
STA-B | 2.2 ± 1.8 | - |
Table 4 GND density of AB, DA and STA specimens at the top and bottom heights
Martensite GND density (1015 m−2) | Austenite GND density (1015 m−2) | |
---|---|---|
AB-T | 3.2 ± 1.6 | 2.1 ± 1.8 |
AB-B | 3.9 ± 2.7 | 2.1 ± 1.7 |
DA-T | 3.1 ± 2.6 | 2.1 ± 1.6 |
DA-B | 3.5 ± 3.0 | 2.1 ± 1.9 |
STA-T | 2.1 ± 2.2 | - |
STA-B | 2.2 ± 1.8 | - |
Fig. 5 HAADF STEM images of 15-5 PH SS specimens showing oxide inclusions in: a top and d bottom heights of AB samples; b top and e bottom heights of DA samples; c top and f bottom heights of STA samples
Fig. 6 HAADF STEM images of 15-5 PH SS showing Cu precipitates in: a top and c bottom heights of DA samples; b top and d bottom heights of STA samples
YS (MPa) | UTS (MPa) | El. (%) | |
---|---|---|---|
AB-T | 631 ± 15 | 1229 ± 3 | 18 ± 1 |
AB-B | 735 ± 15 | 1224 ± 3 | 19 ± 1 |
DA-T | 829 ± 16 | 1311 ± 4 | 23 ± 1 |
DA-B | 919 ± 13 | 1308 ± 5 | 22 ± 1 |
STA-T | 1076 ± 4 | 1102 ± 5 | 15 ± 1 |
STA-B | 1080 ± 3 | 1106 ± 4 | 14 ± 1 |
Table 5 Summary of YS, UTS, El. of different specimen conditions
YS (MPa) | UTS (MPa) | El. (%) | |
---|---|---|---|
AB-T | 631 ± 15 | 1229 ± 3 | 18 ± 1 |
AB-B | 735 ± 15 | 1224 ± 3 | 19 ± 1 |
DA-T | 829 ± 16 | 1311 ± 4 | 23 ± 1 |
DA-B | 919 ± 13 | 1308 ± 5 | 22 ± 1 |
STA-T | 1076 ± 4 | 1102 ± 5 | 15 ± 1 |
STA-B | 1080 ± 3 | 1106 ± 4 | 14 ± 1 |
Fig. 8 Size distributions and volume fractions of oxide inclusions in different specimen conditions measured from HAADF STEM images: a top and b bottom regions of AB sample; c top and d bottom regions of DA sample; e top and f bottom regions of STA sample
Fig. 9 Size distributions and volume fractions of Cu precipitates measured from HAADF STEM images: a top and b bottom regions of DA specimens; c top and d bottom regions of STA specimens
βi | Nb | Si | Cr | Ni | Mn | Cu | |
---|---|---|---|---|---|---|---|
3486 | 732 | 434 | 334 | 213 | 164 | ||
Martensite phase | AB-T (at.%) | 0.21 | 1.41 | 13.84 | 3.33 | 1.05 | 0.80 |
AB-B (at.%) | 0.20 | 1.17 | 11.65 | 2.97 | 0.92 | 0.91 | |
DA-T (at.%) | 0.20 | 1.41 | 12.02 | 3.13 | 0.62 | 0.53 | |
DA-B (at.%) | 0.19 | 1.06 | 11.53 | 2.41 | 1.21 | 0.59 | |
STA_T (at.%) | 0.29 | 1.06 | 13.81 | 3.23 | 1.21 | 0.54 | |
STA_B (at.%) | 0.20 | 1.68 | 12.01 | 3.18 | 1.21 | 0.32 | |
Austenite phase | AB-T (at.%) | 0.21 | 1.29 | 13.35 | 2.98 | 1.93 | 2.55 |
AB-B (at.%) | 0.10 | 0.89 | 12.49 | 3.00 | 0.96 | 3.55 | |
DA-T (at.%) | 0.36 | 1.22 | 12.57 | 3.00 | 0.98 | 2.72 | |
DA-B (at.%) | 0.20 | 0.97 | 10.98 | 2.26 | 1.10 | 2.90 |
Table 6 Strengthening constant (βi) and atomic solution concentrations (at.%) of main elements for different specimens. Atomic concentrations in different phases were measured according to the STEM EDS results
βi | Nb | Si | Cr | Ni | Mn | Cu | |
---|---|---|---|---|---|---|---|
3486 | 732 | 434 | 334 | 213 | 164 | ||
Martensite phase | AB-T (at.%) | 0.21 | 1.41 | 13.84 | 3.33 | 1.05 | 0.80 |
AB-B (at.%) | 0.20 | 1.17 | 11.65 | 2.97 | 0.92 | 0.91 | |
DA-T (at.%) | 0.20 | 1.41 | 12.02 | 3.13 | 0.62 | 0.53 | |
DA-B (at.%) | 0.19 | 1.06 | 11.53 | 2.41 | 1.21 | 0.59 | |
STA_T (at.%) | 0.29 | 1.06 | 13.81 | 3.23 | 1.21 | 0.54 | |
STA_B (at.%) | 0.20 | 1.68 | 12.01 | 3.18 | 1.21 | 0.32 | |
Austenite phase | AB-T (at.%) | 0.21 | 1.29 | 13.35 | 2.98 | 1.93 | 2.55 |
AB-B (at.%) | 0.10 | 0.89 | 12.49 | 3.00 | 0.96 | 3.55 | |
DA-T (at.%) | 0.36 | 1.22 | 12.57 | 3.00 | 0.98 | 2.72 | |
DA-B (at.%) | 0.20 | 0.97 | 10.98 | 2.26 | 1.10 | 2.90 |
YS (MPa) | ∆σ0 | ∆σSS | ∆σGB | ∆σDIS | ∆σODS | ∆σPPT | σYS-estimated | σYS-experimental |
---|---|---|---|---|---|---|---|---|
AB-T | 40 | 92 | 234 | 243 | 124 | - | 639 | 631 ± 15 |
AB-B | 39 | 80 | 248 | 257 | 269 | - | 739 | 735 ± 15 |
DA-T | 40 | 84 | 229 | 234 | 130 | 269 | 814 | 829 ± 16 |
DA-B | 39 | 76 | 243 | 242 | 259 | 241 | 913 | 919 ± 13 |
STA-T | 41 | 92 | 181 | 201 | 66 | 642 | 1050 | 1076 ± 4 |
STA-B | 41 | 85 | 176 | 206 | 65 | 661 | 1056 | 1080 ± 3 |
Table 7 Different strengthening contributions, overall estimated and experimental yield strength of different specimens
YS (MPa) | ∆σ0 | ∆σSS | ∆σGB | ∆σDIS | ∆σODS | ∆σPPT | σYS-estimated | σYS-experimental |
---|---|---|---|---|---|---|---|---|
AB-T | 40 | 92 | 234 | 243 | 124 | - | 639 | 631 ± 15 |
AB-B | 39 | 80 | 248 | 257 | 269 | - | 739 | 735 ± 15 |
DA-T | 40 | 84 | 229 | 234 | 130 | 269 | 814 | 829 ± 16 |
DA-B | 39 | 76 | 243 | 242 | 259 | 241 | 913 | 919 ± 13 |
STA-T | 41 | 92 | 181 | 201 | 66 | 642 | 1050 | 1076 ± 4 |
STA-B | 41 | 85 | 176 | 206 | 65 | 661 | 1056 | 1080 ± 3 |
[1] | W. Chen, L. Xu, K. Hao, Y. Zhang, L. Zhao, Y. Han, Z. Liu, H. Cai, Opt. Laser Technol. 157, 108711 (2023) |
[2] | M. Dumas, D. Fabre, F. Valiorgue, G. Kermouche, B. Truffart, M. Girinon, A. Brosse, H. Karaouni, J. Rech, Proc. CIRP 117, 122 (2023) |
[3] | S. Sarkar, C.S. Kumar, A.K. Nath, Mater. Sci. Eng. A 762, 138109 (2019) |
[4] | S. Yang, Z. Che, C. Liu, W. Liu, J. Li, X. Cheng, X. Li, Corros. Sci. 212, 110970 (2023) |
[5] | A. Liang, S. Sahu, X. Zhao, T. Polcar, A.R. Hamilton, Mater. Charact. 198, 112719 (2023) |
[6] | J. Wu, W. Ding, Y. Zhai, H. Qiao, J. Zhao, Z. Mao, X. Chen, Wear 522, 204836 (2023) |
[7] | Y. Xiao, X. Xiong, G. Sun, M. Sun, W. Liu, Mater. Charact. 191, 112184 (2022) |
[8] | K. He, B. Lv, X. Niu, Z. Mao, L. Zhang, H. Rao, S. Cao, Steel Res. Int. 94, 2200703 (2023) |
[9] | B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Mater. Des. 209, 110008 (2021) |
[10] | I. Avula, A.C. Arohi, C.S. Kumar, I. Sen, J. Mater. Eng. Perform. 30, 6924 (2021) |
[11] | S. Cao, Y. Zou, C.V.S. Lim, X. Wu, Light Adv. Manuf. 2, 20 (2021). |
[12] | S. Cao, Z. Chen, C.V.S. Lim, K. Yang, Q. Jia, T. Jarvis, D. Tomus, X. Wu, JOM 69, 2684 (2017) |
[13] | S. Cao, B. Zhang, Y. Yang, Q. Jia, L. Li, S. Xin, X. Wu, Q. Hu, C.V.S. Lim, J. Alloys Compd. 813, 152247 (2020) |
[14] | H. Liu, H. Zhang, L. Meng, Y. Li, S. Cao, Materials 16, 4054 (2023) |
[15] | H. Tang, Y. Geng, S. Bian, J. Xu, Z. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 466 (2022) |
[16] | J. Wang, R. Zhu, Y. Liu, L. Zhang, Adv. Powder Mater. 2, 100137 (2023). |
[17] | Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.G. Jung, J.H. Lee, J. Zhang, J. Mater. Eng. Perform. 27, 1 (2018) |
[18] | C. Li, M. Ferry, J.J. Kruzic, X. Li, J. Mater. Sci. 57, 9903 (2022) |
[19] | J. Kim, A. Wakai, A. Moridi, J. Mater. Res. 35, 1963 ( 2020) |
[20] | H. Deng, S. Cao, J.C. Williams, L. Chen, W. Qiu, L. Zhou, J. Tang, Mater. Sci. Eng. A 825, 141914 (2021) |
[21] | J. Mei, Y. Han, G. Zu, W. Zhu, Y. Zhao, H. Chen, X. Ran, Acta Metall. Sin. -Engl. Lett. 35, 1665 (2022) |
[22] | Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, J. Alloys Compd. 735, 1414 (2018) |
[23] | J.D. Lopez-Castro, A. Marchal, L. Gonzalez, J. Botana, Proc. Manuf. 13, 818 (2017) |
[24] | I. Kartikeya Sarma, N. Selvraj, A. Kumar, Recent Advances in Manufacturing Processes Systems (Springer, Singapore, 2022), pp. 37-53 |
[25] | B. Lv, F. Wang, X. Niu, L. Zhang, X. Wu, Y. Lai, B. Hong, S. Cao, Mater. Sci. Eng. A 847, 143340 (2022) |
[26] | D. Riabov, M. Rashidi, E. Hryha, S. Bengtsson, Mater. Charact. 169, 110582 (2020) |
[27] | T.H. Hsu, Y.J. Chang, C.Y. Huang, H.W. Yen, C.P. Chen, K.K. Jen, A.C. Yeh, J. Alloys Compd. 803, 30 (2019) |
[28] | J. Hou, B. Dai, Y. Li, J. Zhao, Z. Chen, D. Pan, Y. Zhu, K. Zhang, A. Huang, J. Nucl. Mater. 542, 152443 (2020) |
[29] | ASTM Standard E8/E8M-16a: Standard test methods for tension testing of metallic materials, (2016). https://doi.org/10.1520/E0008_E0008M-16A |
[30] | S. Sabooni, A. Chabok, S.C. Feng, H. Blaauw, T.C. Pijper, H.J. Yang, Y.T. Pei, Addit. Manuf. 46, 102176 (2021) |
[31] | H.R. Lashgari, E. Adabifiroozjaei, C. Kong, L. Molina-Luna, S. Li, Mater. Charact. 197, 112661 (2023) |
[32] | P. Luo, Q. Hu, X. Wu, Metall. Mater. Trans. A 47, 1922 (2016) |
[33] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li, J. Mater. Sci. Technol. 68, 112 (2021) |
[34] | S.M. Vakili, A. Zarei-Hanzaki, A.S. Anoushe, H.R. Abedi, M.H. Mohammad-Ebrahimi, M. Jaskari, S.S. Sohn, D. Ponge, L.P. Karjalainen, Acta Mater. 185, 474 (2020) |
[35] | D. Dong, C. Chang, H. Wang, X. Yan, W. Ma, M. Liu, S. Deng, J. Gardan, R. Bolot, H. Liao, J. Mater. Sci. Technol. 73, 151 (2021) |
[36] | X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, T. Furuhara, Acta Mater. 144, 601 (2018) |
[37] | D.H. Ping, S.Q. Guo, M. Imura, X. Liu, T. Ohmura, M. Ohnuma, X. Lu, T. Abe, H. Onodera, Sci. Rep. 8, 14264 (2018) |
[38] | W. Huang, Y. Zhang, J. Manuf. Process. 42, 139 (2019) |
[39] | S. Waqar, Q. Sun, J. Liu, K. Guo, J. Sun, Int. J. Adv. Des. Manuf. Technol. 112, 879 (2021) |
[40] | X. Nie, Z. Chen, Y. Qi, H. Zhang, H. Zhu, Acta Metall. Sin. -Engl. Lett. 36, 1454 (2023) |
[41] | P. Deng, M. Song, J. Yang, Q. Pan, S. McAllister, L. Li, B.C. Prorok, X. Lou, Mater. Sci. Eng. A 835, 142690 (2022) |
[42] | Y. Sun, R.J. Hebert, M. Aindow, Mater. Des. 156, 429 (2018) |
[43] | J. Ma, Y. Song, H. Jiang, L. Rong, Materials 15, 8849 (2022) |
[44] | A. Ramar, R. Schaeublin, J. Nucl. Mater. 432, 323 (2013) |
[45] | J.N. Wang, Mater. Sci. Eng. A 206, 259 (1996) |
[46] | M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Acta Mater. 127, 165 (2017) |
[47] | T.R. Smith, J.D. Sugar, C. San Marchi, J.M. Schoenung, Acta Mater. 164, 728 (2019) |
[48] | T. Tanno, S. Ohtsuka, Y. Yano, T. Kaito, Y. Oba, M. Ohnuma, S. Koyama, K. Tanaka, J. Nucl. Mater. 440, 568 (2013) |
[49] | H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61, 2769 (2013) |
[50] | E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 98, 81 (2015) |
[51] | W.M. Haynes, T.J. Bruno, D.R. Lide, CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2016), pp. 33-34 |
[52] | L. Yang, C. Zhao, W. Zhu, Z. Cheng, P. Wei, F. Ren, Metall. Mater. Trans. A 51, 2796 (2020) |
[53] | O.F. Erkendirci, A. Avcı, SN Appl. Sci. 2, 1 (2020) |
[54] | K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014) |
[55] | B.L. Tiemens, A.K. Sachdev, G.B. Olson, Metall. Mater. Trans. A 43, 3615 (2012) |
[56] | Z. Li, T. Voisin, J.T. McKeown, J. Ye, T. Braun, C. Kamath, W.E. King, Y.M. Wang, Int. J. Plast. 120, 395 (2019) |
[57] | Z. Hong, X. Zhang, Q. Yan, Y. Chen, J. Alloys Compd. 770, 831 (2019) |
[1] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[2] | Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131. |
[3] | Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144. |
[4] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[5] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[6] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[7] | Haotian Zhou, Haijun Su, Yinuo Guo, Yuan Liu, Di Zhao, Peixin Yang, Zhonglin Shen, Le Xia, Min Guo. Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1433-1453. |
[8] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
[9] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[10] | Guohao Zhang, Zhiwei Hao, Meng Wang, Xufei Lu, Zhuang Zhao, Qian Wang, Xin Lin, Jing Chen, Weidong Huang. Globularization Mechanism and Near Isotropic Properties in Subcritical Heat-Treated Ti6Al4V Fabricated by Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 937-948. |
[11] | Yuxing Zhang, Zhen Wang, Shuchang Li, Xi Zhao, Zhimin Zhang, Yaojin Wu, Xianwei Ren, Fafa Yan, Beibei Dong. High Strength and Excellent Ductility of AZ80 Magnesium Alloy Cabin Component Developed by W-Shaped Channel Extrusion and Subsequent T6 Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 839-856. |
[12] | Yakui Chen, Dong Wu, Dianzhong Li, Yiyi Li, Shanping Lu. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr-9Ni-Nb Austenitic Stainless Steel Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 637-649. |
[13] | Ji-Peng Zou, Xue-Mei Luo, Bin Zhang, Guo-Dong Liu, Hong-Lei Chen, Xiao-Fei Zhu, Wen-Ke Yang, Guang-Ping Zhang. Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2045-2057. |
[14] | Yuting Lv, Yaojie Liu, Zhe Zhang, Qiang Zhang, Hongyao Yu, Rui Wang, Guangbao Sun, Guijiang Wei. Microstructures and Mechanical Properties of the TiC/CM247LC Nickel-Based Composite Fabricated by Selective Laser Melting: Effect of Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1936-1946. |
[15] | Yuxuan Liu, Shichang Liu, Liming Fu, Huanrong Wang, Wei Wang, Mao Wen, Aidang Shan. Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1719-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||