Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (8): 1221-1234.DOI: 10.1007/s40195-023-01539-2
Zhenbo Zuo1,2, Rui Hu1(), Xian Luo1, Qingxiang Wang2(
), Chenxi Li2, Zhen Zhu2, Jian Lan2, Shujin Liang2, Hongkui Tang2, Kang Zhang2
Received:
2022-10-21
Revised:
2022-12-23
Accepted:
2023-01-08
Online:
2023-08-10
Published:
2023-03-22
Contact:
Rui Hu rhu@nwpu.edu.cn.Qingxiang Wang wangqx1981@163.com
Zhenbo Zuo, Rui Hu, Xian Luo, Qingxiang Wang, Chenxi Li, Zhen Zhu, Jian Lan, Shujin Liang, Hongkui Tang, Kang Zhang. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1221-1234.
Add to citation manager EndNote|Ris|BibTeX
Atmosphere | Rotating speed (r/min) | Current (A) | PV (mm) |
---|---|---|---|
Ar & He (high-purity) | 28,000 | 1200 | 30 |
Table 1 Main SS-PREP® processing parameters
Atmosphere | Rotating speed (r/min) | Current (A) | PV (mm) |
---|---|---|---|
Ar & He (high-purity) | 28,000 | 1200 | 30 |
Flow ability | Apparent density | Tap density | Oxygen content |
---|---|---|---|
23.9 s/50 g | 2.54 g/cm3 | 2.79 g/cm3 | 1000 ppm |
Table 2 Basic characteristics of Ti-48Al-3Nb-1.5Ta powders
Flow ability | Apparent density | Tap density | Oxygen content |
---|---|---|---|
23.9 s/50 g | 2.54 g/cm3 | 2.79 g/cm3 | 1000 ppm |
Thermal conductivity, kg (W/m °C) | Density, ρg (kg/m3) | Dynamic viscosity, μg (Pa |
---|---|---|
0.14 | 0.18 | 1.99 × 10-5 |
Table 3 He physical property parameters [29]
Thermal conductivity, kg (W/m °C) | Density, ρg (kg/m3) | Dynamic viscosity, μg (Pa |
---|---|---|
0.14 | 0.18 | 1.99 × 10-5 |
Density, ρ (kg/m3) | Equivalent specific heat capacity, Cp (J/(kg | Temperature of droplets, Td (K) | Temperature of environment, Tf (K) |
---|---|---|---|
4200 | 1315.97 [30] | 1697 | 298 |
Table 4 TiAl parameters involved in calculation of droplet cooling rate
Density, ρ (kg/m3) | Equivalent specific heat capacity, Cp (J/(kg | Temperature of droplets, Td (K) | Temperature of environment, Tf (K) |
---|---|---|---|
4200 | 1315.97 [30] | 1697 | 298 |
Size (μm) | Flow ability (s/50 g) | Apparent density (g/cm3) | Tap density (g/cm3) | Hausner ratio | D10 (μm) | D50 (μm) | D90 (μm) | Hollow powder ratio (%) |
---|---|---|---|---|---|---|---|---|
15-45 | 27.4 | 2.47 | 2.60 | 1.05 | 28.43 | 43.29 | 61.44 | 0 |
45-106 | 23 | 2.47 | 2.68 | 1.09 | 52.26 | 80.85 | 125.6 | 0 |
106-250 | 24.2 | 2.53 | 2.71 | 1.07 | 76.45 | 122.9 | 182.3 | 0.06 |
Table 5 Ti-48Al-3Nb-1.5Ta powder characteristics with different sizes
Size (μm) | Flow ability (s/50 g) | Apparent density (g/cm3) | Tap density (g/cm3) | Hausner ratio | D10 (μm) | D50 (μm) | D90 (μm) | Hollow powder ratio (%) |
---|---|---|---|---|---|---|---|---|
15-45 | 27.4 | 2.47 | 2.60 | 1.05 | 28.43 | 43.29 | 61.44 | 0 |
45-106 | 23 | 2.47 | 2.68 | 1.09 | 52.26 | 80.85 | 125.6 | 0 |
106-250 | 24.2 | 2.53 | 2.71 | 1.07 | 76.45 | 122.9 | 182.3 | 0.06 |
Alloy | Ti-48Al-3Nb-1.5Ta | Ti4822 | Ti4522XD |
---|---|---|---|
Hardness | |||
Modulus |
Table 6 Nanoindentation results of different TiAl alloy powders (unit: GPa)
Alloy | Ti-48Al-3Nb-1.5Ta | Ti4822 | Ti4522XD |
---|---|---|---|
Hardness | |||
Modulus |
[1] | H. Appel, J. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011), pp. 465-732 |
[2] | R. Yang, Acta Metall. Sin. 51, 129 (2015) |
[3] |
B. Bewlay, S. Nag, A. Suzuki, M. Weimer, Mater. High Temp. 33, 1 (2016)
DOI URL |
[4] |
F. Appel, H. Clemens, F. Fischer, Prog. Mater. Sci. 81, 55 (2016)
DOI URL |
[5] |
Y. Kim, S. Kim, JOM 70, 553 (2018)
DOI |
[6] | K. Zhang, Dissertation, Northwestern Polytechnic University (2020) |
[7] | R. Zhang, P. Liu, C. Cui, J. Qu, B. Zhang, J. Du, Acta Metall. Sin. 57, 1215 (2021) |
[8] | P. Huang, Principles of Powder Metallurgy, 2nd edn.(Metallurgical Industry Press, 1997), p. 312 |
[9] | B. Huang, TiAl-based Intermetallic Compound. (Central South University Press, 1998), p. 7 |
[10] | X. Yang, Z. Xi, Y. Liu, H. Tang, W. He, W. Jia, Rare Met. Mater. Eng. 39, 2251 (2010) |
[11] |
J. Liu, Q. Yu, Q. Guo, Chem. Eng. Sci. 73, 44 (2012)
DOI URL |
[12] |
V. Sobolev, N. Nesterov, Powder Metall. Met. Ceram. 28, 829 (1989)
DOI URL |
[13] | B. Champagne, R. Angers, Powder Metall. Int. 16, 125 (1984) |
[14] |
K. Tamotsu, K. Akira, J. Chem. Eng. JPN 4, 364 (1971)
DOI URL |
[15] | Y. Liu, X. Zhao, Y. Lai, Q. Wang, L. Lei, S. Liang, Prog. Mater. Sci. 30, 94 (2020) |
[16] |
K. Isonishi, M. Tokizane, Tetsu- to- Hagane. 76, 2108 (2009)
DOI URL |
[17] |
Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang, Powder Technol. 336, 406 (2018)
DOI URL |
[18] |
C. Basak, M. Krishnan, R. Kumar, K. Abdullah, S. Anantharaman, J. Alloys Compd. 597, 15 (2014)
DOI URL |
[19] |
D. Yang, S. Guo, H. Peng, F. Cao, N. Liu, J. Sun, Intermetallics 61, 72 (2015)
DOI URL |
[20] | M. Zduji, D. Uskokovi, Production of metal powders by rotting electrode process. Paper presented at the VIIIth German-Yugoslav Meeting on Materials Sciences and Development, 8 Oct 2018 |
[21] |
S. Hata, K. Oki, T. Hashimoto, N. Kuwano, J. Phase Equilibria 22, 386 (2001)
DOI URL |
[22] |
B. Rabin, G. Smolik, G. Korth, Mater. Sci. Eng. A 124, 1 (1990)
DOI URL |
[23] | D. Yang, Dissertation, Harbin Institute of Technology (2015) |
[24] | J. Shen, X. Ma, G. Wang, J. Jia, Rare Met. Mater. Eng. 30, 273 (2001) |
[25] |
B. Zhou, Z. Xie, J. Shen, Mater. Sci. Technol. 12, 190 (2004)
DOI URL |
[26] | V.N. Nurni, N. Ballal, in Rate Phenomena, in Process Metallurgy. ed. by S. Seetharaman, T.P. Metall (Elsevier, Boston, 2014), pp. 658-815 |
[27] | Z. Xie, Dissertation, Harbin Institute of Technology (2001) |
[28] |
J. Estrada, J. Duszczyk, J. Mater. Sci. 25, 886 (1990)
DOI URL |
[29] | J. Huang, Industrial Gas Manual, (Chemical Industry Press, 2002), p. 300 |
[30] | T. Peng, J. Guilin Inst. Technol. 20, 65 (2000) |
[31] | Y. Bao, L. Luo, Z. Yu, D. Yang, N. Liu, G. Zhang, J. Mater. Eng. 46, 117 (2018) |
[32] |
Q. Li, L. Zhang, X. Chen, D. Wei, P. Zhang, Y. Chen, Met. Powder Rep. 75, 82 (2020)
DOI URL |
[33] |
W. He, Y. Liu, H. Tang, Y. Li, B. Liu, X. Liang, Mater. Des. 132, 275 (2017)
DOI URL |
[34] | X. Ge, Dissertation, Northwestern Polytechnical University (2020) |
[35] | X. Cai, Rare Met. Mater. Eng. 23, 41 (1994) |
[36] | D.M. Stefanescu, Science and Engineering of Casting Solidification (Springer, Columbus, 2015), p.179 |
[37] | X. Liu, Dissertation, Northwestern Polytechnical University (2016) |
[38] |
D. Bouchard, J. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997)
DOI URL |
[39] |
Y. Sun, Philos. Mag. Lett. 78, 297 (1998)
DOI URL |
[40] | N. Liu, Z. Li, H. Yuan, W. Xu, Y. Zhang, G. Zhang, J. Iron Steel Res. 23, 537 (2011) |
[41] |
M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F. Schimansky, S. Mayer, Intermetallics 22, 231 (2012)
DOI URL |
[42] |
H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, W. Yan, Acta Mater. 179, 158 (2019)
DOI |
[43] |
Y. Tan, J. Zhang, X. Li, Y. Xu, C. Wu, Powder Technol. 393, 154 (2021)
DOI URL |
[1] | Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280. |
[2] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[3] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[4] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[5] | Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219. |
[6] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[7] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[8] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
[9] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[10] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
[11] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[12] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[13] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[14] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[15] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||