Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 1038-1046.DOI: 10.1007/s40195-023-01541-8
Previous Articles Next Articles
Zhezhu Lao1, Xingpu Zhang1,2, Jiangwei Wang1,2(), Jixue Li1(
)
Received:
2022-10-18
Revised:
2023-01-09
Accepted:
2023-01-16
Online:
2023-06-10
Published:
2023-03-06
Contact:
Jiangwei Wang,Zhezhu Lao, Xingpu Zhang, Jiangwei Wang, Jixue Li. Atomistic Evolution of Hf2S/γ′ Interfaces in a Hf-containing Ni-based Single-Crystal Superalloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1038-1046.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Structure of the needle-like precipitates in the Ni-based SX superalloy: a low-magnification STEM-HAADF image of sample after 1100 °C-160 h heat treatment along [001]γ direction. Precipitates are indicated by black arrows; b a precipitate lying in the γ′ phase; c a precipitate lying across the γ/γ′ interface; d-f 2D slices cut from the diffraction volume of the precipitation reconstructed on the basis of 3D electron diffraction data. d Viewing along a*. e Viewing along b*. f Viewing along c*. Vector a* is in blue, vector b* is in green and vector c* is in red. Note that these are projections of a 3D diffraction volume and not conventional 2D in-zone diffraction patterns
Fig. 3 Atomic occupancy in the Hf2S precipitate: a atomic scale EDS mapping of a Hf2S precipitate; b mixed map of Hf and S. Orange and blue balls represent Hf and S atoms, respectively; c atomic model of Hf2S along [100]Hf2S direction; d high-resolution HAADF-STEM image of the precipitate along [100]Hf2S direction. Insets are the simulated HAADF-STEM image of Hf2S and the atomic model of Hf2S
Fig. 4 Interfacial segregations: a high-resolution HAADF-STEM images of Hf2S phases. Bright dots at the Hf2S/γ′ interface are indicated by yellow arrows; b HAADF image of a Hf2S precipitate with dark contrast line areas; c corresponding overlapped Ni, Cr and Hf maps of a; d-f atomic structure of the Hf2S/γ′ interface and corresponding elemental map of e Hf and f Ni. The bright dot at the Hf2S/γ′ is circled by orange dashed line
Fig. 5 Structural evolutions of the Hf2S/γ′ interface. a High-resolution HAADF-STEM images of a Hf2S precipitate. Bright dots are arranged regularly along the interface between Hf2S phase and the matrix, indicated by yellow arrows. b-d Different interface structures along (001)Hf2S plane. The left side of the picture is the Hf2S phase, while the right side is the γ′ phase. Yellow arrows indicate noticeable segregations of Hf atomic columns on the γ′ side of the Hf2S/γ′ interface and white arrows indicate Hf segregations at the transition region. e-h Atomic model for the interfacial evolutions between the Hf2S phase and the γ′ phase
[1] | R.C. Reed, The Superalloys:Fundamentals and Applications (Cambridge University Press, Cambridge, 2006) |
[2] |
A.C. Yeh, S. Tin, Scr. Mater. 52, 519(2005)
DOI URL |
[3] |
C.M.F. Rae, R.C. Reed, Acta Mater. 49, 4113 (2001)
DOI URL |
[4] |
E. Fleischmann, M.K. Miller, E. Affeldt, U. Glatzel, Acta Mater. 87, 350 (2015)
DOI URL |
[5] | J.S. Hou, J.T. Guo, C. Yuan, Y.A. Guo, G.S. Li, L.Z. Zhou, Mater. Sci. Forum 816, 641 (2015) |
[6] | R.F. Decker, J.P. Rowe, J.W. Freeman, Influence of Crucible Materials on High-Temperature Properties of Vacuum-Melted Nickel- Chromium-Cobalt Alloy, Report No. NACA Technical Note 4049 (1957) |
[7] | G.L. Erickson, in Metal Handbook (ASM International, Materials Park, Ohio, 1990), p. 981. |
[8] | W. Mankins, S. Lamb, in Metals Handbook (ASM International, Materials Park, Ohio, 1990), p. 428. |
[9] |
R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, M.K. Miller, Scr. Mater. 51, 327(2004)
DOI URL |
[10] |
K.E. Yoon, D. Isheim, R.D. Noebe, D.N. Seidman, Interface Sci. 9, 249 (2001)
DOI URL |
[11] | H. Murakami, H. Harada, H.K.D.H. Bhadeshia, Appl. Surf. Sci. 76-77, 177 (1994) |
[12] |
P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, R.C. Reed, Acta Mater. 125, 156 (2017)
DOI URL |
[13] |
C. Zhang, J. Zhu, Y. Yang, H.B. Cao, F. Zhang, W.S. Cao, Y.A. Chang, Intermetallics 16, 139 (2008)
DOI URL |
[14] |
K. Rehman, N. Sheng, Z. Sang, S. Xun, Z. Wang, J. Xie, G. Hou, Y. Zhou, X. Sun, Vacuum 191, 110382 (2021)
DOI URL |
[15] |
J. Zhang, R.F. Singer, Metall. Mater. Trans. A 35, 1337 (2004)
DOI URL |
[16] | J. Zhang, R.F. Singer, Int. J. Mater. Res. 93, 806(2002) |
[17] |
P. Kontis, A. Kostka, D. Raabe, B. Gault, Acta Mater. 166, 158 (2019)
DOI URL |
[18] | E.W. Ross, K.S.J.S. O'Hara, Superalloys 1996, 19 (1996) |
[19] | K. Harris, J.B. Wahl, Superalloys 2004, 45 (2004) |
[20] |
Q.Z. Chen, C.N. Jones, D.M. Knowles, Mater. Sci. Eng. A 385, 402 (2004)
DOI URL |
[21] |
Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, Q. Feng, Acta Mater. 176, 109 (2019)
DOI |
[22] |
J.E. Doherty, A.F. Giamei, B.H. Kear, Can. Metall. Q. 13, 229(1974)
DOI URL |
[23] | C. Sun, R.F. Huang, J.T. Guo, Z.Q. Hu, High Temp. Technol. 6, 145 (1988) |
[24] |
K. Chen, L.R. Zhao, J.S. Tse, Acta Mater. 51, 1079 (2003)
DOI URL |
[25] | Y. Joh, S. Utada, M. Osawa, T. Kobayashi, T. Yokokawa, K. Kawagishi, S. Suzuki, H. Harada, Mater. Trans. 57(1305), M2016032 (2016) |
[26] |
S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, K. Kawagishi, S. Suzuki, H. Harada, Metall. Mater. Trans. A 49, 4029 (2018)
DOI |
[27] |
Y. Jiang, R. Liu, Scr. Mater. 62, 782(2010)
DOI URL |
[28] |
K.N. Strafford, P.K. Datta, A.F. Hampton, P. Mistry, Corros. Sci. 29, 673 (1989)
DOI URL |
[29] | A.S. Khanna, C. Wasserfuhr, W.J. Quadakkers, H. Nickel, Mater. Sci. Eng. A 120-121, 185 (1989) |
[30] |
T. Zhao, W.Y. Wang, Y. Zhao, P. Li, Y. Zhang, S. Yang, J. Li, J. Mater. Sci. 57, 12483(2022)
DOI |
[31] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[32] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)
DOI URL |
[33] |
D. Zhang, P. Oleynikov, S. Hovmöller, X. Zou, Z. Kristallogr. 225, 94(2010)
DOI URL |
[34] |
M. Gemmi, E. Mugnaioli, T.E. Gorelik, U. Kolb, L. Palatinus, P. Boullay, S. Hovmöller, J.P. Abrahams, ACS Central Sci. 5, 1315 (2019)
DOI URL |
[35] |
Z. Huang, M. Ge, F. Carraro, C. Doonan, P. Falcaro, X. Zou, Faraday Discuss. 225, 118 (2021)
DOI URL |
[36] |
H.F. Franzen, J. Graham, Z. Kristallogr. 123, 133 (1966)
DOI URL |
[37] | R.T. Holt, W. Wallace, Inter. Metals Rev. 21, 1 (1976) |
[38] | Ł Rakoczy, M. Grudzień-Rakoczy R. Cygan B. Rutkowski T. Kargul T. Dudziak E. Rząd O. Milkovič A. Zielińska-Lipiec, Arch. Civ. Mech. Eng. 22, 143 (2022) |
[39] |
S. Liu, M. Wen, Z. Li, W. Liu, P. Yan, C. Wang, Mater. Des. 130, 157 (2017)
DOI URL |
[40] |
A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Yamaguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, S. Murakami, J. Mater. Sci. 53, 4598 (2018)
DOI |
[41] |
X. Zhang, X. Deng, H. Zhou, J. Wang, J. Mater. Sci. Technol. 108, 281 (2022)
DOI URL |
[42] |
P.Y. Hou, Ann. Rev. Mater. Res. 38, 275 (2008)
DOI URL |
[43] |
P.Y. Hou, T. Izumi, B. Gleeson, Oxid. Met. 72, 109 (2009)
DOI URL |
[44] |
Y. Amouyal, Z. Mao, D.N. Seidman, Appl. Phys. Lett. 95, 161909 (2009)
DOI URL |
[1] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[2] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[3] | Jinshan He, Zhengrong Yu, Longfei Li, Xitao Wang, Qiang Feng. Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3 [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1681-1688. |
[4] | Kai Li, Yu-Jen Chou, Fang-Liang Gao, Guo-Qiang Li. Atomic Structure of Cu49Hf42Al9 Metallic Glass with High Glass-Forming Ability and Plasticity [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 803-807. |
[5] | Yun-Li Li, Wen-Ping Wu, Zhi-Gang Ruan. Molecular Dynamics Simulation of the Evolution of Interfacial Dislocation Network and Stress Distribution of a Ni-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 689-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||