Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 1023-1037.DOI: 10.1007/s40195-023-01532-9
Previous Articles Next Articles
Wenhao Fan1, Jianxun Zhao1,2, Dayong Liu3, Qingcheng Liang1,2(), Wanqiang Liu1(
), Qingshuang Wang4, Heng Liu5, Peng Chen1, Shang Gao1,6, Xinlong Bao1, Yong Cheng7(
), Xinwei Wang1, Xin Guo1
Received:
2022-08-19
Revised:
2022-10-04
Accepted:
2022-10-25
Online:
2023-06-10
Published:
2023-02-08
Contact:
Qingcheng Liang,Wenhao Fan, Jianxun Zhao, Dayong Liu, Qingcheng Liang, Wanqiang Liu, Qingshuang Wang, Heng Liu, Peng Chen, Shang Gao, Xinlong Bao, Yong Cheng, Xinwei Wang, Xin Guo. Effect of Nitrogen and Sulfur Co-Doped Graphene on the Electrochemical Hydrogen Storage Performance of Co0.9Cu0.1Si Alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1023-1037.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Structural characteristics and SEM images of GO, NG and NSG: a XRD patterns of GO, NG and NSG; b SEM image of GO; c SEM image of NG; d SEM images of NSG
Fig. 6 SEM images of Co0.9Cu0.1Si alloy and composites: a, b Co0.9Cu0.1Si; c Co0.9Cu0.1Si + 5% GO; d Co0.9Cu0.1Si + 5% NG; e-h Co0.9Cu0.1Si + x% NSG (x = 3, 5, 7, 10)
Samples | Cmax (mAh/g) | S50 (%) | Ecorr (V) | Icorr (mA/cm2) |
---|---|---|---|---|
Co0.9Cu0.1Si | 524.3 | 51.3 | − 0.94 | 34.8 |
Co0.9Cu0.1Si + 5% GO | 528.4 | 55.4 | − 0.94 | 31.2 |
Co0.9Cu0.1Si + 5% NG | 541.9 | 58.5 | − 0.926 | 29.6 |
Co0.9Cu0.1Si + 3% NSG | 530.6 | 60.1 | − 0.937 | 30.8 |
Co0.9Cu0.1Si + 5% NSG | 580.1 | 64.1 | − 0.894 | 26.8 |
Co0.9Cu0.1Si + 7% NSG | 557.3 | 62.2 | − 0.901 | 27.3 |
Co0.9Cu0.1Si + 10% NSG | 559.4 | 54.4 | − 0.898 | 28.5 |
Table 1 Electrochemical performance of Co0.9Cu0.1Si alloy and composites
Samples | Cmax (mAh/g) | S50 (%) | Ecorr (V) | Icorr (mA/cm2) |
---|---|---|---|---|
Co0.9Cu0.1Si | 524.3 | 51.3 | − 0.94 | 34.8 |
Co0.9Cu0.1Si + 5% GO | 528.4 | 55.4 | − 0.94 | 31.2 |
Co0.9Cu0.1Si + 5% NG | 541.9 | 58.5 | − 0.926 | 29.6 |
Co0.9Cu0.1Si + 3% NSG | 530.6 | 60.1 | − 0.937 | 30.8 |
Co0.9Cu0.1Si + 5% NSG | 580.1 | 64.1 | − 0.894 | 26.8 |
Co0.9Cu0.1Si + 7% NSG | 557.3 | 62.2 | − 0.901 | 27.3 |
Co0.9Cu0.1Si + 10% NSG | 559.4 | 54.4 | − 0.898 | 28.5 |
Samples | HRD200 (%) | I0 (mA/g) | Rct (Ω) | D (× 10−11 cm2/s) |
---|---|---|---|---|
Co0.9Cu0.1Si | 77.8 | 86 | 0.357 | 7.5 |
Co0.9Cu0.1Si + 5% GO | 79.1 | 99.5 | 0.344 | 7.7 |
Co0.9Cu0.1Si + 5% NG | 83.3 | 143.4 | 0.202 | 8.2 |
Co0.9Cu0.1Si + 3% NSG | 82.7 | 135.8 | 0.243 | 8.7 |
Co0.9Cu0.1Si + 5% NSG | 85.8 | 203.2 | 0.171 | 9.6 |
Co0.9Cu0.1Si + 7% NSG | 84.6 | 167.5 | 0.188 | 9.1 |
Co0.9Cu0.1Si + 10% NSG | 80.4 | 112.3 | 0.272 | 8.1 |
Table 2 HRD and dynamic performance of Co0.9Cu0.1Si alloy and composites
Samples | HRD200 (%) | I0 (mA/g) | Rct (Ω) | D (× 10−11 cm2/s) |
---|---|---|---|---|
Co0.9Cu0.1Si | 77.8 | 86 | 0.357 | 7.5 |
Co0.9Cu0.1Si + 5% GO | 79.1 | 99.5 | 0.344 | 7.7 |
Co0.9Cu0.1Si + 5% NG | 83.3 | 143.4 | 0.202 | 8.2 |
Co0.9Cu0.1Si + 3% NSG | 82.7 | 135.8 | 0.243 | 8.7 |
Co0.9Cu0.1Si + 5% NSG | 85.8 | 203.2 | 0.171 | 9.6 |
Co0.9Cu0.1Si + 7% NSG | 84.6 | 167.5 | 0.188 | 9.1 |
Co0.9Cu0.1Si + 10% NSG | 80.4 | 112.3 | 0.272 | 8.1 |
Fig. 10 Linear polarization curves of Co0.9Cu0.1Si and composites: a Co0.9Cu0.1Si, Co0.9Cu0.1Si + 5% GO, NG, NSG; b Co0.9Cu0.1Si, Co0.9Cu0.1Si + x% NSG composites
Fig. 11 Potentiodynamic polarization curves of Co0.9Cu0.1Si and composites: a Co0.9Cu0.1Si, Co0.9Cu0.1Si + 5% GO, NG, NSG; b Co0.9Cu0.1Si, Co0.9Cu0.1Si + x% NSG composites
Fig. 12 EIS curves of Co0.9Cu0.1Si and composites: a Co0.9Cu0.1Si, Co0.9Cu0.1Si + 5% GO, NG, NSG; b Co0.9Cu0.1Si + x% NSG composites; c equivalent circuit
[1] | X. Cai, F.S. Wei, F.N. Wei, H.H. Lu, Acta Metall. Sin. -Engl. Lett. 29, 614 (2016) |
[2] | K. Lee, G. Han, S. Cho, J. Bae, J. Power Sources 380, 37(2018) |
[3] |
H. Liu, W. Liu, Y. Sun, P. Chen, J.X. Zhao, X. Guo, Z.M. Su, Int. J. Hydrog. Energy 45, 11675(2020)
DOI URL |
[4] |
D.B. Pal, A. Singh, A. Bhatnagar, Int. J. Hydrog. Energy 47, 1461(2022)
DOI URL |
[5] | Y.M. Li, B.Y. Duan, Z.C. Liu, Y.H. Zhang, H.P. Ren, Acta Metall. Sin. -Engl. Lett. 31, 897 (2018) |
[6] |
T. Gholami, M. Pirsaheb, Int. J. Hydrog. Energy 46, 783(2021)
DOI URL |
[7] | Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. -Engl. Lett. 29, 577 (2016) |
[8] |
H.Z. Liu, L. Xu, Y. Han, X. Chen, P. Shen, S.M. Wang, X. Huang, X.H. Wang, C.L. Lu, H. Luo, S.X. He, Z.Q. Lan, J. Guo, Green Energy. Environ. 6, 528 (2021)
DOI URL |
[9] | Y.H. Zhang, Z.Y. Li, W. Zhang, W.G. Bu, Y. Qi, S.H. Guo, Acta Metall. Sin. -Engl. Lett. 33, 630 (2020) |
[10] |
C.C. Cormos, Int. J. Hydrog. Energy 34, 6065(2009)
DOI URL |
[11] |
J.S. Hwang, J.H. Kim, S.K. Kim, J.M. Lee, Int. J. Hydrog. Energy 45, 9149(2020)
DOI URL |
[12] | Y.H. Zhang, K.F. Zhang, Z.M. Yuan, P.P. Wang, Y. Cai, W.G. Bu, Y. Qi, Acta Metall. Sin. -Engl. Lett. 32, 1089 (2019) |
[13] |
Y.R. Liu, H.P. Yuan, M. Guo, L.J. Jiang, Int. J. Hydrog. Energy 44, 22064(2019)
DOI URL |
[14] | Y.H. Zhang, Z.M. Yuan, T. Yang, Z.H. Hou, D.L. Zhao, Acta Metall. Sin. -Engl. Lett. 28, 826 (2015) |
[15] |
Z. Chen, Z.L. Ma, J. Zheng, X.G. Li, E. Akiba, H.W. Li, Chin. J. Chem. Eng. 29, 1 (2021)
DOI URL |
[16] |
N.A. Sazelee, M. Ismail, Int. J. Hydrog. Energy 46, 9123(2021)
DOI URL |
[17] | Y. Zhang, F.S. Wei, J.N. Xiao, X. Cai, Acta Metall. Sin. -Engl. Lett. 30, 1033 (2017) |
[18] |
M. Zielinski, L. Cassayre, P. Floquet, M. Macouin, P. Destrac, N. Coppey, C. Foulet, B. Biscans, Waste Manag. 118, 677 (2020)
DOI URL |
[19] | Z.Y. Li, S.L. Li, Z.M. Yuan, Y.H. Zhang, Acta Metall. Sin. -Engl. Lett. 32, 961 (2019) |
[20] |
P.R. Behera, R. Farzana, V. Sahajwalla, J. Clean. Prod. 249, 119407 (2019)
DOI URL |
[21] | Y.H. Zhang, H.T. Wang, X.P. Dong, W.G. Bu, Z.M. Yuan, G.F. Zhang, Acta Metall. Sin. -Engl. Lett. 27, 1088 (2014) |
[22] |
I. Romanov, V. Borzenko, A. Eronin, A. Kazakov, Int. J. Hydrog. Energy 46, 13632(2021)
DOI URL |
[23] |
K. Panwar, S. Srivastava, Int. J. Hydrog. Energy 46, 10819(2021)
DOI URL |
[24] |
M. Chen, C. Tan, W.B. Jiang, J.L. Huang, D. Min, C.H. Liao, H. Wang, J.W. Liu, L.Z. Ouyang, M. Zhu, J. Alloys Compd. 867, 159111(2021)
DOI URL |
[25] |
X.Y. Zhao, J.F. Zhou, X.D. Shen, M. Yang, L.Q. Ma, Int. J. Hydrog. Energy 37, 5050(2012)
DOI URL |
[26] |
H. Sun, X.Y. Gao, F.G. Zhao, Y.M. Li, Y.H. Zhang, H.P. Ren, Int. J. Hydrog. Energy 45, 28974(2020)
DOI URL |
[27] | S.S. Han, N.H. Goo, W.T. Jeong, K.S. Lee, J. Power Sources 92, 157(2001) |
[28] |
C.R.M. Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram, Mat. Sci. Eng. C-Mater. 27, 908(2007)
DOI URL |
[29] |
M.W. Davids, T. Martin, M. Lototskyy, R. Denys, V. Yartys, Int. J. Hydrog. Energy 46, 13658(2021)
DOI URL |
[30] | Y. Wu, Y. Peng, X.J. Jiang, H. Zeng, Z.Y. Wang, J. Zhang, X.G. Li, Prog. Nat. Sci. Mater. 31, 319 (2021) |
[31] | M. Marinelli, M. Santarelli, J. Energy Storage 32, 101864(2020) |
[32] |
J.J. Liu, X.Y. Chen, J. Xu, S. Zhu, H.H. Cheng, G. Yang, X.B. Han, L. Zhang, Y. Li, S.M. Han, Chem. Eng. J. 418, 129395 (2021)
DOI URL |
[33] |
D.W. Huang, Y.H. Li, Y.P. Yang, Z.W. Zhu, W. Zhang, J. Alloys Compd. 843, 154862(2020)
DOI URL |
[34] |
S. Mokhtari, S.M. Mohseni, B. Rahmati, L. Jamilpanah, Mater. Lett. 289, 129402 (2021)
DOI URL |
[35] |
J.X. Wen, H.Y. Che, R. Cao, H. Dong, Y.X. Ye, H.Y. Zhang, J. Brechtl, Y.F. Gao, P.K. Liaw, Mater. Des. 188, 108425 (2020)
DOI URL |
[36] |
Q.H. Wang, L.F. Jiao, H.M. Du, W.X. Peng, S.C. Liu, Y.J. Wang, H.T. Yuan, Int. J. Hydrog. Energy 35, 8357(2010)
DOI URL |
[37] |
Y.L. Cao, W.H. Zhou, X.Y. Li, X.P. Ai, X.P. Gao, H.X. Yang, Electrochim. Acta 51, 4285 (2006)
DOI URL |
[38] |
P. Gao, S.Q. Yang, Z. Xue, G.B. Liu, G.L. Zhang, L.Q. Wang, G.B. Li, Y.Z. Sun, Y.J. Chen, J. Alloys Compd. 539, 90(2012)
DOI URL |
[39] |
Y. Wang, J.M. Lee, X. Wang, Int. J. Hydrog. Energy 35, 1669(2010)
DOI URL |
[40] |
Y. Sun, D.Y. Liu, W.Q. Liu, H. Liu, P. Chen, J.X. Zhao, Y. Cheng, Q.S. Wang, X.W. Wang, Int. J. Hydrog. Energy 46, 40239(2021)
DOI URL |
[41] | Z.Y. Zhao, L.Z. Zhang, P.K. Bai, W.B. Du, S.W. Wang, X.Y. Xu, Q.N. Dong, Y.X. Li, B. Han, Acta. Metall. Sin. -Engl. Lett. 34, 14 (2021) |
[42] |
S.K. Verma, A. Bhatnagar, V. Shukla, P.K. Soni, A.P. Pandey, T.P. Yadav, O.N. Srivastava, Int. J. Hydrog. Energy 45, 19516(2020)
DOI URL |
[43] | X.F. Li, X.F. Ma, J. Zhang, E. Akiyama, Y.F. Wang, X.L. Song, Acta Metall. Sin. -Engl. Lett. 33, 15 (2020) |
[44] |
Z. Ramezani, H. Dehghani, Int. J. Hydrog. Energy 47, 1026(2022)
DOI URL |
[45] |
J. Choi, N. Okimura, T. Yamada, Y. Hirata, N. Ohtake, H. Akasaka, Diam. Relat. Mater. 116, 108384 (2021)
DOI URL |
[46] |
S. Goodwin, Z. Coldrick, S. Heeg, B. Grieve, Carbon 177, 207 (2021)
DOI URL |
[47] |
Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)
DOI URL |
[48] |
J. Lin, C. Lu, L.S. Sun, F. Liang, Z.Y. Cao, L.M. Wang, Int. J. Hydrog. Energy 41, 1098(2016)
DOI URL |
[49] |
P. Dhanasekaran, S.V. Selvaganesh, A. Shukla, S.D. Bhat, Mater. Lett. 282, 128837 (2020)
DOI URL |
[50] |
C.R. Ou, H. Chen, H. Wang, Y.L. Liao, R. Li, H.B. Liu, Electrochim. Acta 380, 138256 (2021)
DOI URL |
[51] |
S.S. Gunasekaran, T.K. Kumaresan, S.A. Masilamani, SZh. Karazhanov, K. Raman, R. Subashchandrabose, Mater. Lett. 273, 127919 (2020)
DOI URL |
[52] |
F. Zhang, M.J. Li, H.J. Li, G.L. Wang, Y.B. Long, P.H. Li, C.P. Li, B.H. Yang, Carbon 175, 364 (2021)
DOI URL |
[53] |
R. Costantini, H. Ustunel, Z.J. Feng, M. Stredansky, D. Toffoli, G. Fronzoni, C. Dri, G. Comelli, D. Cvetko, G. Kladnik, G. Bavdek, L. Floreano, A. Morgante, A. Cossaro, FlatChem. 24, 100205 (2020)
DOI URL |
[54] |
Y.H. Li, C.Z. Ai, S.G. Deng, Y.D. Wang, X.L. Tong, X.L. Wang, X.H. Xia, J.P. Tu, Mater. Res. Bull. 134, 111094 (2021)
DOI URL |
[55] |
X. Yu, Y.B. Kang, H.S. Park, Carbon 101, 49 (2016)
DOI URL |
[56] | Z.X. Xie, L.M. Zhang, L. Li, Q.B. Deng, G. Jiang, J.Q. Wang, B.Q. Cao, Y.J. Wang, Prog. Nat. Sci.-Mater. 31, 207 (2021) |
[57] |
C. Karaman, O. Karaman, N. Atar, M.L. Yola, Electrochim. Acta 380, 138262 (2021)
DOI URL |
[58] |
N.K. Rotte, V. Naresh, S. Muduli, V. Reddy, V.V.S. Srikanth, S.K. Martha, Electrochim. Acta 363, 137209 (2020)
DOI URL |
[59] |
Q. Li, A.Y. Bai, Z.C. Xue, Y. Zheng, H. Sun, Electrochim. Acta 362, 137223 (2020)
DOI URL |
[60] |
Y. Jia, Y.S. Zhao, X.X. Yang, M.X. Ren, Y.Q. Wang, B.Y. Lei, Int. J. Hydrog. Energy 46, 7642(2021)
DOI URL |
[61] |
D.Y. Qu, X.D. Xu, L.N. Zhou, W.J. Li, J. Wu, D. Liu, Z.Z. Xie, J.S. Li, H.L. Tang, Int. J. Hydrog. Energy 44, 7326(2019)
DOI URL |
[62] |
G. He, L.F. Jiao, H.T. Yuan, Y.Y. Zhang, Y.J. Wang, Electrochem. Commun. 8, 1633 (2006)
DOI URL |
[63] |
J.X. Zhao, X.J. Zhou, Y.L. Guo, Z.M. Su, H. Liu, W.Q. Liu, S. Gao, Solid State Sci. 91, 1 (2019)
DOI URL |
[64] |
H. Liu, X.J. Zhai, Z. Li, X. Tao, S. Gao, J.X. Zhao, W.Q. Liu, J. Alloys Compd. 755, 147(2018)
DOI URL |
[65] |
Z. Ramezani, H. Dehghani, Int. J. Hydrog. Energy 44, 13613(2019)
DOI URL |
[66] |
G. He, L.F. Jiao, H.T. Yuan, Y.Y. Zhang, Y.H. Zhang, Y.J. Wang, Int. J. Hydrog. Energy 32, 3416(2007)
DOI URL |
[67] |
J.X. Zhao, X.J. Zhai, X. Tao, H. Liu, W.Q. Liu, D.Y. Jiang, S. Gao, Int. J. Hydrog. Energy 43, 13383(2018)
DOI URL |
[68] |
Q.S. Wang, F.F. Jin, D.Y. Liu, H. Liu, P. Chen, W.Q. Liu, J.X. Zhao, Solid State Sci. 108, 106382 (2020)
DOI URL |
[69] |
C.C. Ma, X.H. Shao, D.P. Cao, J. Mater. Chem. 22, 8911 (2012)
DOI URL |
[70] |
L. Zeng, Z.Q. Lan, Z.Z. Sun, H. Ning, H.Z. Liu, J. Guo, Int. J. Hydrog. Energy 44, 25840(2019)
DOI URL |
[71] |
T. Wang, L.X. Wang, D.L. Wu, W. Xia, D.Z. Jia, Sci. Rep. 5, 9591(2015)
DOI PMID |
[72] | Y. Lv, C. Zhang, Y.P. Zhang, Q.S. Wang, X.X. Zhang, Z.H. Dong, Acta Metall. Sin. -Engl. Lett. 35, 961 (2022) |
[73] | N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Electrochem. Soc. 139, L72 (1992) |
[1] | Tielong Han, Jiajun Li, Naiqin Zhao, Chunnian He. Fabrication of Graphene Nanoplates Modified with Nickel Nanoparticles for Reinforcing Copper Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 643-648. |
[2] | Yang-Huan Zhang, Kai-Feng Zhang, Ze-Ming Yuan, Peng-Peng Wang, Ying Cai, Wen-Gang Bu, Yan Qi. Hydrogen Storage Performances of Nanocrystalline and Amorphous NdMg11Ni+x wt% Ni (x=100, 200) Alloys Synthesized by Mechanical Milling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1089-1098. |
[3] | Tian-Long Zhang, Toko Tokunaga, Munekazu Ohno, Mi-Lin Zhang, Kiyotaka Matsuura. Fabrication of Al-Coated Mg-Li Alloy Sheet and Investigation of Its Properties [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 169-177. |
[4] | V. Arumugam, S. Barath Kumar, C.Santulli, A. Joseph Stanley. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(5): 351-364. |
[5] | Huixue JIANG, Ke QIN, Haitao ZHANG, Jianzhong CUI. A new composite material produced by semi-continuous casting [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(4): 255-260. |
[6] | Shuhua LIANG,Xianhui WANG,Liang FANG,Zhikang FAN. Relationship between powder characteristic and internal oxidation of Al in Cu-Al pre-alloyed powders [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(1): 71-80. |
[7] | L.P. Shi, X.D. He , Y. Li. Theory Deposition Model and Influencing Factors During Process of Preparing Micro-Layer Laminate by EBPVD [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(3): 283-287 . |
[8] | F.Lu, Q.P.Zhong. GALVANIC CORROSION AND PROTECTION OF GECM/LY12CZ COUPLES UNDER DIFFERENT ATMOSPHERIC EXPOSURE CONDITIONS [J]. Acta Metallurgica Sinica (English Letters), 2003, 16(1): 41-45 . |
[9] | J.Wang School of Mechanical, Manufacturing and Medical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia. THE EROSIVE PROCESS IN ABRASIVE WATERJET CUTTING OF POLYMER MATRIX COMPOSITES [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 886-890. |
[10] | S. Abubakir;Y.S. Wu; T.C. Zhang; Z. Yang and Z. Zhang (Department of Surface Science & Corrosion Engineering, University of Science and Technology Beijing,Beijing 100083, China)(Department of Materials Science and Engineering, Northeastern University, Shenyang 110006, China). STUDY ON THE CORROSION AND MECHANICAL PROPERTIES OF FJ316 STAINLESS STEEL-GLASS COMPOSITE [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(3): 175-182. |
[11] | Z.C Guo;X.W Yang, H.K Lin, Z.Y Wang and M. Wang(Department of Metallurgy, Kunming University of Science and Technology Kunming 650093, China). STRUCTURE AND PROPERTIES OF RE-Ni-B-Al_2O_3 COATING MATERIAL [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(1): 56-60. |
[12] | F.Lu;W.Y.Shen;J.G. Li and W.D. Zhen(Beijing Institute of Aeronautical Materials,Beijing 100095,China Manuscript received 26 August 1996). GALVANIC CORROSION BETWEEN GRAPHITE EPOXY COMPOSITE MATERIALS AND LY12CZ ALUMINUM ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(6): 669-673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||