Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (2): 310-322.DOI: 10.1007/s40195-022-01455-x
Previous Articles Next Articles
Guoqiang Xi1, Xuhan Zhao1, Yanlong Ma1(), Yu Mou1, Ju Xiong1, Kai Ma2, Jingfeng Wang2
Received:
2022-05-31
Revised:
2022-07-10
Accepted:
2022-07-11
Online:
2023-02-10
Published:
2022-09-10
Contact:
Yanlong Ma, myl@cqut.edu.cn
Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Mg (wt%) | Gd (wt%) | Y (wt%) | Zn (wt%) |
---|---|---|---|---|
MgZn2Y2.66 | Bal | - | 7.43 | 4.20 |
MgZn2Gd2.66 | Bal | 12.40 | - | 3.28 |
Table 1 Chemical composition of the alloys
Alloy | Mg (wt%) | Gd (wt%) | Y (wt%) | Zn (wt%) |
---|---|---|---|---|
MgZn2Y2.66 | Bal | - | 7.43 | 4.20 |
MgZn2Gd2.66 | Bal | 12.40 | - | 3.28 |
Position | Element (at.%) | |||
---|---|---|---|---|
Mg | Gd | Y | Zn | |
A | 87.2 | - | 7.9 | 4.8 |
B | 98.5 | - | 0.9 | 0.4 |
C | 90.4 | 5.0 | - | 4.4 |
D | 99.1 | 0.3 | - | 0.5 |
Table 2 EDS elemental analysis of the phase marked in Fig. 1
Position | Element (at.%) | |||
---|---|---|---|---|
Mg | Gd | Y | Zn | |
A | 87.2 | - | 7.9 | 4.8 |
B | 98.5 | - | 0.9 | 0.4 |
C | 90.4 | 5.0 | - | 4.4 |
D | 99.1 | 0.3 | - | 0.5 |
Fig. 4 a Average hydrogen evolution of studied alloys in 3.5 wt% NaCl solution, b the enlargement of the red rectangle region in a; and c mass loss rate of studied alloys in 3.5 wt% NaCl solution
Alloy | Corrosion current density (A/cm2) | Corrosion potential (V) |
---|---|---|
MgZn2Y2.66 | 1.02 × 10-5 | − 1.579 |
MgZn2Gd2.66 | 3.24 × 10-4 | − 1.551 |
Table 3 Corrosion potentials and corrosion current densities of the two alloys obtained by Tafel fitting of the potentiodynamic polarization curves
Alloy | Corrosion current density (A/cm2) | Corrosion potential (V) |
---|---|---|
MgZn2Y2.66 | 1.02 × 10-5 | − 1.579 |
MgZn2Gd2.66 | 3.24 × 10-4 | − 1.551 |
Fig. 6 Electrochemical impedance spectra (EIS) of the two alloys after immersion in 3.5 wt% NaCl solution for 5 min: a Nyquist diagram, b Bode diagram
Alloy | Rs (Ω cm2) | RL (Ω·cm2) | L (H·cm2) | Qf (Ω−1 cm−2 Sn) | Nf | Rf (Ω·cm2) | Qdl (Ω−1 cm−2 Sn) | Ndl | Rct (Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
MgZn2Y2.66 | 9.132 | 1339 | 2513 | 3.66 × 10-3 | 0.92 | 192 | 1.46 × 10-5 | 0.91 | 562.3 |
MgZn2Gd2.66 | 8.68 | 452.2 | 62.25 | 2.50 × 10-5 | 0.91 | 57.63 | 1.10 × 10-7 | 0.86 | 75.32 |
Table 4 Parameters obtained by fitting the EIS shown in Fig. 6 using the equivalent circuit as shown in Fig. 7
Alloy | Rs (Ω cm2) | RL (Ω·cm2) | L (H·cm2) | Qf (Ω−1 cm−2 Sn) | Nf | Rf (Ω·cm2) | Qdl (Ω−1 cm−2 Sn) | Ndl | Rct (Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
MgZn2Y2.66 | 9.132 | 1339 | 2513 | 3.66 × 10-3 | 0.92 | 192 | 1.46 × 10-5 | 0.91 | 562.3 |
MgZn2Gd2.66 | 8.68 | 452.2 | 62.25 | 2.50 × 10-5 | 0.91 | 57.63 | 1.10 × 10-7 | 0.86 | 75.32 |
Fig. 8 XPS survey spectra of the corrosion products: a MgZn2Y2.66, b MgZn2Gd2.66. High-resolution XPS for c Mg 1s and e Y 3d of MgZn2Y2.66, d Mg 1s and f Gd 4d of MgZn2Gd2.66
Fig. 9 Microscopic corrosion morphologies of the two alloys after immersion in 3.5 wt% NaCl solution: a, c MgZn2Y2.66 for 300 min, b, d MgZn2Gd2.66 for 170 min
Fig. 11 a Low magnification cross-sectional morphology of the MgZn2Y2.66 alloys after immersion in 3.5 wt% NaCl solution for 5 h; b-d the high-magnification micrographs of blue, orange and green rectangle regions in a, respectively
Fig. 12 Low magnification a and high magnification b cross-sectional morphologies of the MgZn2Gd2.66 alloys after immersion in 3.5 wt% NaCl solution for 3 h; c the high-magnification micrograph of blue rectangle region in a, d the high-magnification micrograph of orange rectangle region in b
[1] |
M. Yamasaki, Z.M. Shi, A. Atrens, A. Furukawa, Y. Kawamura, Corros. Sci. 200, 110237 (2022)
DOI URL |
[2] | H. Xie, G.H. Wu, X.L. Zhang, Z.Q. Li, W.C. Liu, L. Zhang, X. Tong, B.D. Sun, Acta Metall. Sin.-Engl. Lett. 35, 922 (2022) |
[3] |
X.C. Ma, S.Y. Jin, R.Z. Wu, J.X. Wang, G.X. Wang, B. Krit, S. Betsofen, Trans. Nonferrous Met. Soc. 31, 3228 (2021)
DOI URL |
[4] |
P.D. Huo, F. Li, R.Z. Wu, R.H. Gao, A.X. Zhang, Mater. Des. 219, 110696 (2022)
DOI URL |
[5] |
X.R. Chen, Q.Y. Liao, Q.C. Le, Q. Zou, H.N. Wang, A. Atrens, Electrochim. Acta 348, 136315 (2020)
DOI URL |
[6] |
X. Gao, J.F. Nie, Scr. Mater. 58, 619 (2008)
DOI URL |
[7] |
S.Z. Wu, T. Nakat, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan, J. Mater. Sci. Technol. 73, 66 (2021)
DOI |
[8] |
Z.J. Yu, X. Xu, A. Mansoor, B.T. Du, K. Shi, K. Liu, S.B. Li, W.B. Du, J. Mater. Sci. Technol. 88, 21 (2021)
DOI URL |
[9] | L.L. Zhang, Y.T. Zhang, J.S. Zhang, R. Zhao, J.X. Zhang, C.X. Xu, Acta Metall. Sin. -Engl. Lett. 33, 500 (2020) |
[10] | M.C. Liang, H. Zhang, L.F. Zhang, P. Xue, D.R. Ni, W.Z. Wang, Z.Y. Ma, H.Q. Ye, Z.Q. Yang, Acta Metall. Sin.-Engl. Lett. 34, 12 (2021) |
[11] |
S.Y. Xu, C.M. Liu, Y.C. Wan, G. Zeng, Y.H. Gao, S.N. Jiang, Trans. Nonferrous Met. Soc. 31, 1291 (2021)
DOI URL |
[12] | L.S. Wang, J.H. Jiang, B. Saleh, Q.Y. Xie, Q. Xu, H. Liu, A.B. Ma, Acta Metall. Sin.-Engl. Lett. 33, 1180 (2020) |
[13] |
D. Wang, S.J. Liu, R.Z. Wu, S. Zhang, Y. Wang, H.J. Wu, J.H. Zhang, L.G. Hou, J. Alloy. Compd. 881, 160663 (2021)
DOI URL |
[14] |
J.A. Liu, S.Q. Shi, L.R. Zhang, Mater Lett. 231, 154 (2018)
DOI URL |
[15] |
J.F. Wang, W.Y. Jiang, Y. Ma, Y. Li, S. Huang, Mater. Chem. Phys. 203, 352 (2017)
DOI URL |
[16] |
M. Sabbaghian, R. Mahmudi, K.S. Shin, Metall. Mater. Trans. 52, 1269 (2021)
DOI URL |
[17] | C. Zheng, S.F. Chen, R.X. Wang, S.H. Zhang, M. Cheng, Acta Metall. Sin.-Engl. Lett. 34, 248 (2021) |
[18] |
H.X. Liao, J.H. Kim, T.K. Lee, J.F. Song, J. Peng, B. Jiang, F.S. Pan, J. Magn. Alloy. 8, 1120 (2020)
DOI URL |
[19] |
X.J. Zhou, Y. Yao, J. Zhang, X.Z. Lu, H. Liu, Z.J. Wu, Mater. Sci. Eng. A 794, 139934 (2020)
DOI URL |
[20] |
S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Mater. Sci. Eng. A 692, 35 (2017)
DOI URL |
[21] |
X. Yang, S.S. Wu, S.L. Lv, L.Y. Hao, X.G. Fang, J. Alloy. Compd. 726, 276 (2017)
DOI URL |
[22] |
M. Gao, K. Yang, L.L. Tan, Z. Ma, J. Mater. Sci. Technol. 81, 88 (2021)
DOI URL |
[23] |
D.K. Xu, E.H. Han, Y.B. Xu, Prog. Nat. Sci.: Mater. Int. 26, 117 (2016)
DOI URL |
[24] |
F.Y. Cao, J. Zhang, K.K. Li, G.L. Song, Trans. Nonferrous Met. Soc. 31, 939 (2021)
DOI URL |
[25] |
G.J. Gao, M.Q. Zeng, E.L. Zhang, R.C. Zeng, L.Y. Cui, D.K. Xu, F.Q. Wang, M.B. Kannan, J. Mater. Sci. Technol. 83, 161 (2021)
DOI URL |
[26] | P.P. Wang, H.T. Jiang, Y.J. Wang, Y. Zhang, J.C. Tao, Acta Metall. Sin.-Engl. Lett. 35, 941 (2022) |
[27] | W. Wang, S.Y. Chen, K. Qiao, P. Peng, P. Han, B. Wu, C.X. Wang, J. Wang, Y.H. Wang, K.S. Wang, Acta Metall. Sin.-Engl. Lett. 35, 703 (2022) |
[28] |
S.Y. Jin, X.C. Ma, R.Z. Wu, T.Q. Li, J.X. Wang, B.L. Krit, L.G. Hou, J.H. Zhang, G.X. Wang, Int. J. Min. Metall. Mater. 29, 1453 (2022)
DOI URL |
[29] |
X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, Y.J. Xue, Mater. Lett. 163, 250 (2016)
DOI URL |
[30] |
X.B. Zhang, J.W. Dai, H. Yang, S. Liu, X. He, Z. Wang, Mater. Technol. 32, 399 (2016)
DOI URL |
[31] |
A. Srinivasan, Y. Huang, L.C. Mendis, C. Blawert, U.K. Kainer, Mater. Sci. Eng. A 595, 224 (2014)
DOI URL |
[32] |
J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, F.H. Wang, J. Alloy. Compd. 782, 648 (2019)
DOI URL |
[33] |
D.K. Bae, S.H. Kim, D.H. Kim, W.T. Kim, Acta Mater. 50, 2343 (2002)
DOI URL |
[34] |
M.M. Hoseini, R. Mahmudi, R.P. Babu, P. Hedstron, J. Alloy. Compd. 831, 154766 (2020)
DOI URL |
[35] |
K. Wang, J.F. Wang, X.X. Dou, Y.D. Huang, N. Hort, S. Gavras, S.J. Liu, Y.W. Cai, J.X. Wang, F.S. Pan, J. Mater. Sci. Technol. 52, 72 (2020)
DOI |
[36] |
R. Pinto, M.G.S. Ferreira, M.J. Carmezim, M.F. Montemor, Electrochim. Acta 56, 1535 (2011)
DOI URL |
[37] |
J.S. Xie, J.H. Zhang, Z.H. You, S.J. Liu, K. Guan, R.Z. Wu, J. Wang, J. Feng, J. Magn. Alloy 9, 41 (2021)
DOI URL |
[38] |
S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, Z.Q. Zhang, Corros. Sci. 166, 108419 (2020)
DOI URL |
[39] | G.Q. Xi, Y. Mou, Y.L. Ma, X.H. Zhao, J. Xiong, K. Ma, J.F. Wang, Trans. Nonferrous Met. Soc. (2022). https://kns.cnki.net/kcms/detail/43.1239.TG.20220331.1329.020.html |
[1] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[2] | Bing-Yu Qian, Rui-Zhi Wu, Jian-Feng Sun, Jing-Huai Zhang, Le-Gan Hou, Xiao-Chun Ma, Jia-Hao Wang, Hai-Ting Hu. Evolutions of Microstructure and Mechanical Properties in Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 215-228. |
[3] | Wenhui Yao, Yonghua Chen, Yanning Chen, Liang Wu, Bin Jiang, Fusheng Pan. Development of Slippery Liquid-Infused Porous Surface on AZ31 Mg Alloys for Corrosion Protection [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 229-236. |
[4] | Wei Qiu, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen, Yan-Jie Ren, Mao-Hai Yao, Ai-Hu Xiong, Zhuo-Ran Zeng. Effect of Vanadium Nitride (VN) Particles on Microstructure and Mechanical Properties of Extruded AZ31 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 237-250. |
[5] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[6] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[7] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[8] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[9] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[10] | Fei Guo, Cheng-Wu Zheng, Pei Wang, Dian-Zhong Li, Yi-Yi Li. Effects of Rare Earth on Austenite-Ferrite Phase Transformation in a Low-Carbon Fe-C Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 141-146. |
[11] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[12] | Hao-Jie Yan, Jun-Jie Xia, Lian-Kui Wu, Fa-He Cao. Hot Corrosion Behavior of Ti45Al8.5Nb Alloy: Effect of Anodization and Pre-oxidation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1531-1546. |
[13] | Xiu-Rong Zhu, Jun Wang, Wei-Ning Shi, Xue-Bing Liu, Xin-Fang Zhang, Hai-Fei Zhou. Manipulating Precipitation Through Thermomechanical Treatment to Control Corrosion Behavior of an Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1547-1558. |
[14] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[15] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||