Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1281-1290.DOI: 10.1007/s40195-021-01367-2
Previous Articles Next Articles
Peng Peng1(), Shengyuan Li1, Weiqi Chen2, Yuanli Xu1, Xudong Zhang1, Zhikun Ma1, Jiatai Wang3(
)
Received:
2021-08-23
Revised:
2021-10-01
Accepted:
2021-10-25
Online:
2022-01-08
Published:
2022-01-08
Contact:
Peng Peng,Jiatai Wang
About author:
Jiatai Wang manvict@foxmail.comPeng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 SEM images of microstructures of as-cast AlCoCrFeNi2.1 EHEA: a Bulky dendrites region; b Lamellar structures region; c Enlarged image marked in (b); d Enlarged image marked in b
Fig. 3 EDS mapping of as-cast AlCoCrFeNi2.1 EHEA: a Bulky dendrites region, elemental mapping for Al, Cr, Fe, Co and Ni, respectively; b Lamellar structures region, elemental mapping for Al, Cr, Fe, Co and Ni, respectively
Fig. 5 Dark-field TEM images of AlCoCrFeNi2.1 EHEA and corresponding selected-area electron diffraction and EDS mappings: a Bright field TEM image of as-cast AlCoCrFeNi2.1 EHEA; b SAED pattern of CoCrFe-rich phase (marked A by red color in Fig. 5(a)); c SAED pattern of NiAl-rich phase (marked B by yellow color in Fig. 5(a)); d EDS mapping of AlCoCrFeNi2.1 EHEA
Fig. 6 Solid-liquid interface morphologies of AlCoCrFeNi2.1 EHEA at different growth velocities: a 5 μm/s, b 10 μm/s, c 50 μm/s, d 100 μm/s, e 200 μm/s
Fig. 7 Steady-state longitudinal microstructure of directionally solidified AlCoCrFeNi2.1 EHAE grown at different growth velocities: a 5 μm/s, b 10 μm/s, c 50 μm/s, d 100 μm/s, e 200 μm/s
Parameters | Eutectic | NiAl phase | Ref. |
---|---|---|---|
Tf (K) | 1673 | 1911 | [ |
C0 (at.%) | 48.53 | 15.24 | [ |
ΔSf (J mol-1 K-1) | 8.12 | 8.12 | [ |
a0 (m) | 2 × 10-9 | 2 × 10-9 | [ |
| 1.7 × 10-7 | 3.8 × 10-7 | [ |
Dl (m2 s-1) | 7.84 × 10-9 | 6.44 × 10-9 | [ |
V0 (m s-1) | 500 | 2338 | [ |
Rg (J mol-1 K-1) | 8.314 | 8.314 |
Table 1 Relevant physical parameters
Parameters | Eutectic | NiAl phase | Ref. |
---|---|---|---|
Tf (K) | 1673 | 1911 | [ |
C0 (at.%) | 48.53 | 15.24 | [ |
ΔSf (J mol-1 K-1) | 8.12 | 8.12 | [ |
a0 (m) | 2 × 10-9 | 2 × 10-9 | [ |
| 1.7 × 10-7 | 3.8 × 10-7 | [ |
Dl (m2 s-1) | 7.84 × 10-9 | 6.44 × 10-9 | [ |
V0 (m s-1) | 500 | 2338 | [ |
Rg (J mol-1 K-1) | 8.314 | 8.314 |
Fig. 8 Determination of the leading phase during directional solidification of AlCoCrFeNi2.1 EHAE through the comparison between the growth interface temperature of the eutectic and the primary phase by the maximum interface temperature criterion
Fig. 10 Microhardness of the AlCoCrFeNi2.1 EHEA: dependences of the HV on a Growth velocity and b Lamellar spacing for directionally solidified AlCoCrFeNi2.1 EHEA
Growth velocity (μm/s) | Lamellar spacing (λ) | Microhardness values (HV) |
---|---|---|
5 | 5.31 ± 0.22 | 312.38 ± 1.0 |
10 | 3.79 ± 0.22 | 315.25 ± 1.2 |
50 | 1.73 ± 0.21 | 320.81 ± 2.0 |
100 | 1.24 ± 0.20 | 325.64 ± 1.0 |
200 | 0.88 ± 0.18 | 329.54 ± 1.8 |
Table 2 Values of lamellar spacings (λ), growth velocity (V) and microhardness (HV) for AlCoCrFeNi2.1 EHEAs
Growth velocity (μm/s) | Lamellar spacing (λ) | Microhardness values (HV) |
---|---|---|
5 | 5.31 ± 0.22 | 312.38 ± 1.0 |
10 | 3.79 ± 0.22 | 315.25 ± 1.2 |
50 | 1.73 ± 0.21 | 320.81 ± 2.0 |
100 | 1.24 ± 0.20 | 325.64 ± 1.0 |
200 | 0.88 ± 0.18 | 329.54 ± 1.8 |
[1] |
L. Qiao, Y. Liu, J.C. Zhu, J. Alloys Compd. 877, 160295 (2021)
DOI URL |
[2] | S. Praveen, H.S. Kim, Adv. Een. Mater. 20, 1700645 (2018) |
[3] | V.M. Gopinath, S. Arulvel, Mater. Today 43, 817 (2020) |
[4] |
B. Cantor, Prog. Mater. Sci. 120, 100754 (2021)
DOI URL |
[5] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118, 100777 (2021)
DOI URL |
[6] |
X.H. Yan, Y. Zhang, Scr. Mater. 187, 188 (2020)
DOI URL |
[7] |
Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, J.W. Qiao, Mater. Chem. Phys. 210, 233 (2018)
DOI URL |
[8] | P. Sathiyamoorthi, H. Seop Kim, Prog. Mater. Sci. 25, 100709 (2020) |
[9] |
Y.Z. Shi, B. Yang, P.K. Liaw, Metals. 7, 43 (2017)
DOI URL |
[10] |
Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35, 369 (2019)
DOI URL |
[11] |
M.L. Wang, H.Z. Cui, Y.Q. Zhao, C.M. Wang, N. Wei, Y. Zhao, X. Zhang, Q. Song, Mater. Des. 180, 107893 (2019)
DOI URL |
[12] |
M.L. Wang, Y.P. Lu, G.J. Zhang, H.Z. Cui, D.F. Xu, N. Wei, T.J. Li, Vacuum. 184, 109905 (2021)
DOI URL |
[13] | Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 34 (2016) |
[14] |
W.R. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018)
DOI URL |
[15] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[16] |
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 6200 (2015)
DOI URL |
[17] |
T. Xiong, S.J. Zheng, J.Y. Pang, X.L. Ma, Scr. Mater. 186, 336 (2020)
DOI URL |
[18] |
Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Scr. Mater. 187, 202 (2020)
DOI URL |
[19] |
I. Baker, M. Wu, Z.W. Wang, Mater. Charact. 147, 545 (2019)
DOI |
[20] |
Z.S. Yang, Z.J. Wang, Q.F. Wu, T. Zheng, P. Zhao, J.K. Zhao, J.Y. Chen, Appl. Phys. A 125, 208 (2019)
DOI URL |
[21] |
Y. Dong, Z.Q. Yao, X. Huang, F.M. Du, C.Q. Li, A.F. Chen, F. Wu, Y.Q. Cheng, Z.R. Zhang, J. Alloys Compd. 823, 153886 (2020)
DOI URL |
[22] |
Q.F. Wu, Z.J. Wang, T. Zheng, D. Chen, Z.S. Yang, J.J. Li, J.J. Kai, J.C. Wang, Mater. Lett. 253, 268 (2019)
DOI URL |
[23] |
Z.Y. Ding, Q.F. He, Q. Wang, Y. Yang, Inter. J. Plast. 106, 57 (2018)
DOI URL |
[24] |
S. Vrtnik, S. Guo, S. Sheikh, A. Jelen, P. Kozelj, J. Luzar, A. Kocjan, Z. Jalicic, A. Meden, H. Guim, H.J. Kim, J. Dolinsek, Intermetallics. 93, 122 (2018)
DOI URL |
[25] | R. Jain, M.R. Rahul, S. Jain, S. Samal, V. Kumar, Trans. Indian Inst. Met. 71, 2795 (2018) |
[26] |
M.L. Wang, Y.P. Lu, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.K. Liaw, Scr. Mater. 204, 114132 (2021)
DOI URL |
[27] | R. Li, J. Ren, G.J. Zhang, J.Y. He, Y.P. Lu, T.M. Wang, T.J. Li, Acta Metall. Sin. -Engl. Lett. 33, 1046 (2020) |
[28] |
Y. Su, C. Liu, X. Li, J. Guo, B. Li, J. Jia, H. Fu, Intermetallics. 13, 267 (2005)
DOI URL |
[29] | H.W. Kerr, W. Kurz, Int. Mater. Rev. 4, 129 (1996) |
[30] |
S. Akamatsu, M. Plapp, Curr. Opin. Solid State Mater. Sci. 20, 46 (2016)
DOI URL |
[31] |
T. Umeda, T. Okane, W. Kurz, Acta Mater. 44, 4209 (1996)
DOI URL |
[32] | P. Peng, A.Q. Zhang, J.M. Yue, Mater. Sci. Eng. A 773, 138887 (2020) |
[33] |
A.Q. Zhang, P. Peng, W.C. Zheng, J.R. Yang, X.D. Zhang, Y.L. Xu, J. Alloys Compd. 859, 157866 (2021)
DOI URL |
[34] |
J.M. Yue, P. Peng, A.Q. Zhang, S.Y. Li, W.C. Zheng, L. Lu, S.D. Zhou, J. Mater. Res. Technol. 10, 895 (2021)
DOI URL |
[35] | N. Li, C.L. Jia, Z.W. Wang, L.H. Wu, D.R. Ni, Z.K. Li, H.M. Fu, P. Xue, B.L. Xiao, Z.Y. Ma, Y. Shao, Y.L. Chang, Acta Metall. Sin. -Engl. Lett. 33, 947 (2020) |
[36] |
L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, Y.H. Ge, L.H. Gao, G.J. Zhang, Intermetallics. 118, 106681 (2020)
DOI URL |
[37] |
H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Intermetallics. 113, 106569 (2019)
DOI URL |
[38] |
X.W. Hu, S.M. Li, S.F. Gao, L. Liu, H.Z. Fu, J. Alloys Compd. 493, 116 (2010)
DOI URL |
[39] |
U. Böyük, N. Maraşlı, J. Alloys Compd. 485, 264 (2009)
DOI URL |
[40] |
K.L. Cao, W.C. Yang, J.C. Zhang, P.F. Qu, C. Liu, H.J. Su, J. Zhang, L. Liu, J. Alloys Compds. 870, 159419 (2021)
DOI URL |
[41] |
P. Peng, L. Lu, W.C. Zheng, J.T. Wang, S.D. Zhou, J. Alloys Compds. 872, 159558 (2021)
DOI URL |
[42] |
K.L. Cao, W.C. Yang, J.C. Zhang, P.F. Qu, C. Liu, H.J. Su, J. Zhang, L. Liu, J. Mater. Res. Technol. 11, 474 (2021)
DOI URL |
[43] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124, 143 (2017)
DOI URL |
[44] |
O. Hunziker, W. Kurz, Metall. Mater. Trans. A 30, 3167 (1999)
DOI URL |
[45] |
S. Milenkovic, A.A. Coelho, R. Caram, J. Cryst. Growth 211, 485 (2000)
DOI URL |
[46] |
J.T. Wang, Z.P. Long, P.F. Jiang, Y. Fautrelle, X. Li, Metall. Mater. Trans. A 51, 3504 (2020)
DOI URL |
[47] |
A. Parisi, Acta Mater. 56, 1348 (2008)
DOI URL |
[48] | K.A. Jackson, J.D. Hunt, T. Metall, Soc. 236, 1129 (1966) |
[49] |
P. Magnin, R. Trivedi, Acta Metall. Mater. 39, 453 (1991)
DOI URL |
[50] |
W. Kurz, B. Giovanola, R. Trivedi, Acta Metall. 34, 823 (1986)
DOI URL |
[51] |
J.A. Horwath, L.F. Mondolfo, Acta Metall. 10, 1037 (1962)
DOI URL |
[52] |
M.H. Burden, J.D. Hunt, J. Cryst. Growth 22, 109 (1974)
DOI URL |
[53] |
C.J. Cui, C. Wang, P. Wang, W. Liu, Y.Y. Lai, L. Deng, H.J. Su, J. Mater. Sci. Technol. 42, 63 (2020)
DOI URL |
[54] | E.O. Hall, Proc. Phys. Soc. B. 64, 747 (1957) |
[55] | N.J. Petch, J. Iron Steel Inst. 174, 25 (1953) |
[1] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[2] | Kai Wang, Zhenjiang Wang, Jinling Lu, Zhijun Wang, Wei Wang, Xingqi Luo. Erosion Behavior of NiCoCrFeNb0.45 Eutectic High-Entropy Alloy in Liquid-Solid Two-Phase Flow [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1266-1274. |
[3] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[4] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[5] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[6] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[7] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[8] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[9] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[10] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[11] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[12] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[13] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[14] | Yu-Qing Mao, Ping Yang, Li-Ming Ke, Yang Xu, Yu-Hua Chen. Microstructure Evolution and Recrystallization Behavior of Friction Stir Welded Thick Al-Mg-Zn-Cu alloys: Influence of Pin Centerline Deviation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 745-756. |
[15] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||