Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 948-960.DOI: 10.1007/s40195-021-01328-9
Previous Articles Next Articles
Xiangbin Han1, Shuangbao Wang1,2(), Bo Wei1, Shuai Pan1, Guizhen Liao1, Weizhou Li1(
), Yuezhou Wei1
Received:
2021-04-23
Revised:
2021-07-16
Accepted:
2021-07-29
Online:
2022-06-10
Published:
2022-06-15
Contact:
Shuangbao Wang,Weizhou Li
About author:
Weizhou Li, wz-li@hotmail.comXiangbin Han, Shuangbao Wang, Bo Wei, Shuai Pan, Guizhen Liao, Weizhou Li, Yuezhou Wei. Influence of Sc Addition on Precipitation Behavior and Properties of Al-Cu-Mg Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 948-960.
Add to citation manager EndNote|Ris|BibTeX
Samples | Cu | Mg | Sc | Mn | Si | Fe | Zn | Al |
---|---|---|---|---|---|---|---|---|
Al-Cu-Mg | 5.1 | 0.65 | 0 | 0.8 | < 0.04 | < 0.03 | < 0.02 | Bal. |
Al-Cu-Mg-Sc | 5.1 | 0.65 | 0.2 | 0.8 | < 0.04 | < 0.03 | < 0.02 | Bal. |
Table 1 Chemical compositions of the studied Al-Cu-Mg-(Sc) alloys (wt%)
Samples | Cu | Mg | Sc | Mn | Si | Fe | Zn | Al |
---|---|---|---|---|---|---|---|---|
Al-Cu-Mg | 5.1 | 0.65 | 0 | 0.8 | < 0.04 | < 0.03 | < 0.02 | Bal. |
Al-Cu-Mg-Sc | 5.1 | 0.65 | 0.2 | 0.8 | < 0.04 | < 0.03 | < 0.02 | Bal. |
Fig. 1 Typical ADF-STEM images of the precipitate microstructure in the conventional Al-Cu-Mg alloy aged at 180 °C for a 0.5 h, b 10 h of peak-aging time, c 50 h, d 75 h. e-h Local magnification of a, b, respectively, further showing the type and size of the formed precipitates in the matrix. Viewing direction: [001]Al crystallographic zone axis
Fig. 2 Typical ADF-STEM images viewed along the [001]Al direction showing the precipitate microstructure in Al-Cu-Mg-Sc alloy aged at 180 °C for a 0.5 h, b 25 h of peak-aging time, c 50 h, d 75 h. e-h Local magnification of a, b, respectively, further showing the type and size of the formed precipitates in the matrix. (i) and (j) Low-magnification and locally enlarged ADF images acquired from the peak-aging Al-Cu-Mg-Sc alloy subjected to the secondary solution and peak-aging treatment
Fig. 3 Low-magnification SEM-EDS mappings and the associated EDS spectra on the right a, b showing the existing mode of Sc in the peak-aged Al-Cu-Mg-Sc alloy, as well as the schematics revealing the mechanism underlying the distinct difference of precipitate formations in Al-Cu-Mg c, d Al-Cu-Mg-Sc e alloys. The elemental mappings shown in different colors are acquired from the green rectangular region in the SEM micrograph. Insets in the spectra of a, b show the corresponding elemental content of the spectrum. The orange Miller planes of (120)Al and (100)Al shown in c, d indicate the positions of Cu layers in early-stage GP zones
Fig. 4 Size distributions of the precipitates in the peak-aged alloy samples. a Rod-like S phase in the Al-Cu-Mg (10 h) and needle-like GPB zone in the Al-Cu-Mg-Sc (25 h). b Plate-like θ’ phases in the Al-Cu-Mg (10 h). The insets in the figure schematically show the morphology and size of the different precipitates
Fig. 5 Experimental comparison of the corrosion resistance between peak-aged Al-Cu-Mg and Al-Cu-Mg-Sc alloys. a Schematic of the electrochemical testing setup. b Potentiodynamic polarization curves of two different alloys studied. Inset shows the extracted values of Ecorr and Epit. c, d Typical current transient records for the Al-Cu-Mg and Al-Cu-Mg-Sc alloys, respectively. Both samples were held potentiostatically at - 700 mV SCE during the current transient collection. Insets present local magnifications of corresponding single metastable pitting events
Fig. 6 Strain distribution at the interface between precipitates and Al matrix in the peak-aged Al-Cu-Mg a-d and Al-Cu-Mg-Sc (e-h) alloys. a-d Atomic-resolution ADF image of S and θ’ phases, matrix lattice distortion of εxx, εxy and εyy surrounding the precipitates, respectively. e-h Atomic-resolution ADF image of GPB zone, matrix lattice distortion of εxx, εxy and εyy surrounding the precipitates, respectively. Two vertical g{200}Al vectors were used for the lattice-distortion measurement. The lattice strain fields in the ADF images were calculated in relative to the strain-free Al area and shown in the corresponding images. The color scale represents the strain variations, and the positive value corresponded to the tensile strain and vice versa
Fig. 7 Cross-sectional examination of intergranular corrosion by optical microscopy a, c and the corresponding PFZ-widths by ADF observations b, d in peak-aged samples: a, b Al-Cu-Mg alloy; c, d Al-Cu-Mg-Sc alloy
Fig. 8 Hardness and electrical conductivity vs. aging time curves of Al-Cu-Mg alloys without and with Sc upon aging at 180 °C a, b and the engineering stress-strain curves of the peak-aged Al-Cu-Mg and Al-Cu-Mg-Sc, as well as solid solution-treated Al-Cu-Mg-Sc alloys c
[1] | M. Gazizov, C. D. Marioara, J. Friis, S. Wenner, R. Holmestad, R. Kaibyshev, Mater. Sci. Eng. A 767, 138369 (2019). |
[2] | C. Pan, Y. Yang, S. Wang, Y. Liu, S. Hu, Z. Wang, P. Shen, Mater. Des. 187, 108393 (2019). |
[3] | S.B. Wang, J.H. Chen, M.J. Yin, Z.R. Liu, D.W. Yuan, J.Z. Liu, C.H. Liu, C.L. Wu, Acta Mater. 60, 6573 (2012). |
[4] | A. Belkharchouche, A. Boudiaf, M. El Amine Belouchrani, Mater. Sci. Eng. A 689, 96 (2017). |
[5] | A. Cochard, K. Zhu, S. Joulié, J. Douin, J. Huez, L. Robbiola, P. Sciau, M. Brunet, Mater. Sci. Eng. A 690, 259 (2017). |
[6] | W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363, 972 (2019). |
[7] | J.H. Chen, E. Costan, M.A. van Huis, Q. Xu, H.W. Zandbergen, Science 312, 416 (2006). |
[8] | Y. Liu, X. Han, S. Wang, B. Wei, W. Li, J. Alloys Compd. 838, 155677 (2020). |
[9] | X. Gong, S. Luo, S. Li, C. Wu, Acta Metall. Sin. Engl. Lett. 34, 597 (2021). |
[10] | S.S. Liang, S.P. Wen, X.L. Wu, H. Huang, K.Y. Gao, Z.R. Nie, Mater. Sci. Eng. A 783, 139319 (2020). |
[11] | Y. Liu, F. Teng, F.H. Cao, Z.X. Yin, Y. Jiang, S.B. Wang, P.K. Shen, J. Alloys Compd. 774, 988 (2019). |
[12] | J. Geng, G. Liu, T. Hong, M. Wang, D. Chen, N. Ma, H. Wang, J. Alloys Compd. 775, 193 (2019). |
[13] | Y.H. Gao, C. Yang, J.Y. Zhang, L.F. Cao, G. Liu, J. Sun, E. Ma, Mater. Res. Lett. 7, 18 (2019). |
[14] | L. Liu, J.H. Chen, S.B. Wang, C.H. Liu, S.S. Yang, C.L. Wu, Mater. Sci. Eng. A 606, 187 (2014). |
[15] | J. Sun, G. Wu, L. Zhang, X. Zhang, L. Liu, J. Zhang, J. Alloys Compd. 813, 152216 (2020). |
[16] | Y.H. Gao, L.F. Cao, C. Yang, J.Y. Zhang, G. Liu, J. Sun, Mater. Today Nano 6, 100035 (2019). |
[17] | S. Bai, X. Yi, G. Liu, Z. Liu, J. Wang, J. Zhao, Mater. Sci. Eng. A 756, 258 (2019). |
[18] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen J. Mater. Sci. Technol. 75, 126 (2021). |
[19] | Z. Shen, Q. Ding, C. Liu, J. Wang, H. Tian, J. Li, Z. Zhang, J. Mater. Sci Technol. 33, 1159 (2017). |
[20] | M.J. Styles, C.R. Hutchinson, Y. Chen, A. Deschamps, T.J. Bastow, Acta Mater. 60, 6940 (2012). |
[21] | L. Kovarik, S.A. Court, H.L. Fraser, M.J. Mills, Acta Mater. 56, 4804 (2008). |
[22] | S.P. Ringer, B.T. Sofyan, K.S. Prasad, G.C. Quan, Acta Mater. 56, 2147(2008). |
[23] | C. Yang, P. Zhang, D. Shao, R.H. Wang, L.F. Cao, J.Y. Zhang, G. Liu, B.A. Chen, J. Sun, Acta Mater. 119, 68 (2016). |
[24] | F. Sun, G.L. Nash, Q. Li, E. Liu, C. He, C. Shi, N. Zhao, , J. Mater. Sci Technol. 33, 1015 (2017). |
[25] | Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 795, 139943 (2020). |
[26] | P.D. Nellist, S.J. Pennycook, Ultramicroscopy 78, 111 (1999). |
[27] | M.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998). |
[28] | M. Takeda, J. Suzuki, J. Opt. Soc. Am. A 13, 1495 (1996). |
[29] | T. E.M. Staab, M. Haaks, H. Modrow, Appl. Surf. Sci. 255, 132 (2008). |
[30] | Z. Feng, Y. Yang, B. Huang, M. Han, X. Luo, J. Ru, Mater. Sci. Eng. A 528, 706 (2010). |
[31] | J.Z. Liu, S.S. Yang, S.B. Wang, J.H. Chen, C.L. Wu, J. Alloys Compd. 613, 139 (2014). |
[32] | A. Deschamps, T. Bastow, F. Geuser, A. Hill, C. Hutchinson, Acta Mater. 59, 2918 (2011). |
[33] | Y. Miura, C. Joh, T. Katsube, Mater. Sci. Forum 331, 1031 (2000). |
[34] | D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50, 4021 (2002). |
[35] | C. Liu, S.K. Malladi, Q. Xu, J. Chen, F.D. Tichelaar, X. Zhuge, H.W. Zandbergen, Sci. Rep. 7, 2184 (2017). |
[36] | X.Y. Liu, M.J. Li, F. Gao, S.X. Liang, X.L. Zhang, H.X. Cui, J. Alloys Compd. 639, 263 (2015). |
[37] | H. Bo, L.B. Liu, Z.P. Jin, J. Alloys Compd. 490, 318 (2010). |
[38] | L. Kovarik, M.J. Mills Scr. Mater. 64, 999 (2011). |
[39] | T.J. Konno, M. Kawasaki, K. Hiraga, Philos. Mag. B 81, 1713 (2001). |
[40] | Z. Balogh, G. Schmitz, in Physical Metallurgy(by D. E. Laughlin, Fifth Edition). ed.ed. K. Hono (Elsevier, Oxford, 2014), p. 387. |
[41] | S. Hirosawa, T. Sato, A. Kamio, H.M. Flower, Acta Mater. 48, 1797 (2000). |
[42] | A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Châtel, W. C.M. Mattens, A.R. Miedema, Calphad 7, 51 (1983). |
[43] | R. Kirchheim, Acta Mater. 50, 413 (2002). |
[44] | S.H. Wu, P. Zhang, D. Shao, P.M. Cheng, J. Kuang, K. Wu, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 721, 200 (2018). |
[45] | K.D. Ralston, N. Birbilis, M. Weyland, C.R. Hutchinson, Acta Mater. 58, 5941 (2010). |
[46] | D. Nickel, D. Dietrich, T. Mehner, P. Frint, D. Spieler, T. Lampke, Metals 5, 172 (2015). |
[47] | Y. Chen, B. Yang, Y. Zhou, Y. Wu, H. Zhu, Acta Mater. 197, 172 (2020). |
[48] | L. Kovarik, M.J. Mills, Acta Mater. 60, 3861 (2012). |
[49] | Z.R. Liu, J.H. Chen, S.B. Wang, D.W. Yuan, M.J. Yin, C.L. Wu, Acta Mater. 59, 7396 (2011). |
[50] | R. Wang, S. Jiang, B.A. Chen, Z. Zhu,, J. Mater. Sci. Technol. 57, 78 (2020). |
[51] | R.Z. Chao, X.H. Guan, R.G. Guan, D. Tie, C. Lian, X. Wang, J. Zhang, T. Nonferr, Metal. Soc. 24, 3164 (2014). |
[52] | E. Vandersluis, C. Ravindran, M. Bamberger, J. Alloys Compd. 867, 159121 (2021). |
[53] | S.K. Kairy, B. Rouxel, J. Dumbre, J. Lamb, T.J. Langan, T. Dorin, N. Birbilis, Corros. Sci. 158, 108095 (2019). |
[54] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun, J. Alloys Compd. 822, 153629 (2020). |
[1] | He Xie, Guohua Wu, Xiaolong Zhang, Zhongquan Li, Wencai Liu, Liang Zhang, Xin Tong, Baode Sun. Microstructural Characteristics and Mechanical Properties of Cast Mg-3Nd-3Gd-xZn-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 922-940. |
[2] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[3] | L. M. Liu, Y. X. Lai, C. L. Wu, Z. Zhang, J. H. Chen. Anisotropic Inter-granular Corrosion Behaviors and Microstructures of AlMgSiCu Alloy Sheets Made by Thermal-Mechanical Treatments [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 275-284. |
[4] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[5] | Chao-Min Zhang, Pan Xie, Yong Jiang, Sheng Zhan, Wen-Quan Ming, Jiang-Hua Chen, Ke-Xing Song, Hao Zhang. Double-Shelled L12 Nano-structures in Quaternary Al-Er-Sc-Zr Alloys: Origin and Critical Significance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1277-1284. |
[6] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[7] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[8] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[9] | Sabry S. Youssef, Xiaodong Zheng, Yingjie Ma, Sensen Huang, Min Qi, Jianke Qiu, Ruixue Zhang, Peitao Hua, Shijian Zheng, Jiafeng Lei, Rui Yang. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al Binary Alloys: A Comparative Investigation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 710-718. |
[10] | Xiaohui Xi, Jinliang Wang, Liqing Chen, Zhaodong Wang. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 617-627. |
[11] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[12] | Xiangpeng Gong, Shifang Luo, Shiyong Li, Cuilan Wu. Dislocation-Induced Precipitation and Its Strengthening of Al-Cu-Li-Mg Alloys with High Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 597-605. |
[13] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[14] | Pengfei Wu, Shengan Wu, Dan Sun, Yougen Tang, Haiyan Wang. A Review of Al Alloy Anodes for Al-Air Batteries in Neutral and Alkaline Aqueous Electrolytes [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 309-320. |
[15] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||