Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (5): 773-789.DOI: 10.1007/s40195-021-01342-x
Previous Articles Next Articles
Hua-Zhen Jiang1,2, Zheng-Yang Li1,2(), Tao Feng3, Peng-Yue Wu3, Qi-Sheng Chen1,2(
), Shao-Ke Yao1,2, Jing-Yu Hou1,2
Received:
2021-05-18
Revised:
2021-08-12
Accepted:
2021-08-31
Online:
2022-05-10
Published:
2021-11-05
Contact:
Zheng-Yang Li,Qi-Sheng Chen
About author:
Qi‑Sheng Chen, qschen@imech.ac.cnHua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Morphology of the gas-atomized powders, b image of the SLM-produced 316L samples under argon protection, c a sketch of the heat treatment process, d laser scanning strategy, and e sketch of the as-fabricated specimens which the tensile specimen extraction scheme and the position selected for microstructure observation are clearly shown
Fe | Cr | Ni | Mo | Mn | Si | C | P | S |
---|---|---|---|---|---|---|---|---|
Bal | 18.84 | 10.68 | 2.26 | 1.05 | 0.91 | ≤ 0.03 | ≤ 0.04 | ≤ 0.01 |
Table 1 Chemical composition of as-used 316L SS powder (wt.%)
Fe | Cr | Ni | Mo | Mn | Si | C | P | S |
---|---|---|---|---|---|---|---|---|
Bal | 18.84 | 10.68 | 2.26 | 1.05 | 0.91 | ≤ 0.03 | ≤ 0.04 | ≤ 0.01 |
Samples | Heat treatment conditions |
---|---|
As-built | - |
(Heat treatment 1) HT1 | 873 K + 2 h, furnace cooling |
(Heat treatment 2) HT2 | 1123 K + 2 h, furnace cooling |
(Heat treatment 3) HT3 | 1328 K + 2 h, furnace cooling |
Table 2 Heat treatments applied to the 316L SS samples
Samples | Heat treatment conditions |
---|---|
As-built | - |
(Heat treatment 1) HT1 | 873 K + 2 h, furnace cooling |
(Heat treatment 2) HT2 | 1123 K + 2 h, furnace cooling |
(Heat treatment 3) HT3 | 1328 K + 2 h, furnace cooling |
Fig. 2 Optical microstructures of heat-treated samples at temperatures of 1328 K, 1123 K, and 873 K, respectively. a, c, e Top view; b, d, f side view
Fig. 5 Grains maps of as-built and annealed 316L SS samples. The grain maps on the side surfaces are similar to each other; hence only one map paralleling to build direction is presented in these figures. The grain size distribution is obtained from the top surface in the image. a As-built, b 873 K, c 1123 K, d 1328 K. e, f, g, h Corresponding grain size distributions for as-built, 873 K, 1123 K, and 1328 K sample, respectively
References | Conditions | Grain size |
---|---|---|
aMontero-Sistiaga et al. [36] | The as-built samples are heat-treated under argon atmosphere at 600 °C and 950 °C for 2 h, followed by air cooling, whereas the 1095 °C annealed samples are water cooled | The grain length is ~ 100 μm. There is no difference in grain size in comparison with the as-built samples |
aDing et al. [37] | The as-produced samples are annealed for 3 h at 400 °C and 900 °C, followed by furnace cooling | The difference in grain size between 400 °C annealed sample and as-built sample is little, whereas the grain size is refined after annealing at 900 °C |
bO.O. Salman et al. [27] | The as-built samples are heat-treated under argon atmosphere at 573 K, 873 K, 1273 K, 1373 K, and 1673 K for 6 h | The average grain size increases from 45 μm, 50 μm, 55 μm, 65 μm, 88 μm to 102 μm as annealing temperature increases from 573 K to 1673 K |
cChen et al. [25] | The as-produced samples are annealed for 1 h at 400 °C and 800 °C, followed by water cooling | The average grain size slightly decreases from 5.9 μm to 5.4 μm as annealing temperature increases |
bVoisin et al. [28] | The as-built samples are annealed every 200 °C from 400 °C to 1200 °C for 1 h | The average grain size remains nearly the same up to 800 °C. Overall, the grain size shows an increasing trend (from ~ 9 μm to ~ 18 μm) when annealing temperature is raised from room temperature to 1200 °C |
aSun et al. [15] | The as-built samples are annealed at 650 °C in vacuum condition for 2 h, followed by furnace cooling | There is little sign of grain growth for SLM-produced samples |
Table 3 Summary of grain size changes as a function of the annealing temperature
References | Conditions | Grain size |
---|---|---|
aMontero-Sistiaga et al. [36] | The as-built samples are heat-treated under argon atmosphere at 600 °C and 950 °C for 2 h, followed by air cooling, whereas the 1095 °C annealed samples are water cooled | The grain length is ~ 100 μm. There is no difference in grain size in comparison with the as-built samples |
aDing et al. [37] | The as-produced samples are annealed for 3 h at 400 °C and 900 °C, followed by furnace cooling | The difference in grain size between 400 °C annealed sample and as-built sample is little, whereas the grain size is refined after annealing at 900 °C |
bO.O. Salman et al. [27] | The as-built samples are heat-treated under argon atmosphere at 573 K, 873 K, 1273 K, 1373 K, and 1673 K for 6 h | The average grain size increases from 45 μm, 50 μm, 55 μm, 65 μm, 88 μm to 102 μm as annealing temperature increases from 573 K to 1673 K |
cChen et al. [25] | The as-produced samples are annealed for 1 h at 400 °C and 800 °C, followed by water cooling | The average grain size slightly decreases from 5.9 μm to 5.4 μm as annealing temperature increases |
bVoisin et al. [28] | The as-built samples are annealed every 200 °C from 400 °C to 1200 °C for 1 h | The average grain size remains nearly the same up to 800 °C. Overall, the grain size shows an increasing trend (from ~ 9 μm to ~ 18 μm) when annealing temperature is raised from room temperature to 1200 °C |
aSun et al. [15] | The as-built samples are annealed at 650 °C in vacuum condition for 2 h, followed by furnace cooling | There is little sign of grain growth for SLM-produced samples |
Fig. 7 Band contrast maps of as-built and annealed 316L SS samples. The misorientation angle distribution is obtained from the top surface in the image. A misorientation angle between 2° and 5° is colored in red, 5°-15° is colored in green, whereas 15°-180° is colored in blue. a As-built, b 873 K, c 1123 K, d 1328 K. e, f, g h Corresponding misorientation angle distributions for as-built, 873 K, 1123 K, and 1328 K sample, respectively
Fig. 8 Effect of annealing temperature on the mechanical property of SLM-processed parts. a and b Representative engineering tensile stress-strain curves and the corresponding true stress-true strain curves at various annealing temperatures. c and d Summary of tensile properties and microhardness of SLM-produced parts as a function of annealing temperature, respectively. e Variation of yield strength with annealing temperature including our work and data reported in the literature. The blue dashed lines indicate the general variation trend. f Ultimate tensile strength as a function of annealing temperature based on reported values in the literature. g Hardness as a function of annealing temperature for our work and researches reported in the literature. h Comparison between the obtained mechanical properties in this study and wrought 316L (including cold finished and solution treated) reported in the literature. The red dashed lines indicate the general trend of mechanical response for samples annealed at different temperatures. The above data are collected from references [2,7,19,22,25,26,28,35,36,37,39,40,41,42,43,44,45,46,47]
Fig. 9 Effect of annealing temperatures on strain hardening behavior of SLM-produced parts. a Normalized work hardening rate curves as a function of annealing temperature, b logarithmic plots of true stress versus true strain for the SLMed parts at various annealing temperatures
Fig. 11 a Representative engineering tensile stress-strain curves at different strain rates. b Summary of tensile properties of SLM-produced part at different strain rates. c Logarithmic plots of true stress versus true strain for the SLMed material at different strain rates. d Logarithmic plots of tensile strength versus strain rate for the SLMed material
[1] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)
DOI URL |
[2] |
Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, Z.J. Shen, J. Nucl. Mater. 470, 170 (2016)
DOI URL |
[3] |
M. Kazemipour, M. Mohammadi, E. Mfoumou, A.M. Nasiri, JOM 71, 3230 (2019)
DOI URL |
[4] |
M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, Mater. Sci. Eng. A 677, 1 (2016)
DOI URL |
[5] |
H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Feng, S.W. Li, H. Gao, H.J. Xu, Opt. Laser. Technol. 119, 105592 (2019)
DOI URL |
[6] |
J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mater. Sci. Eng. A 696, 113 (2017)
DOI URL |
[7] |
Z.J. Sun, X.P. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104, 197 (2016)
DOI URL |
[8] |
S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Scripta Mater. 159, 89 (2019)
DOI URL |
[9] |
K. Lin, D. Gu, L. Xi, L. Yuan, S. Niu, P. Lv, Q. Ge, Int. J. Adv. Manuf. Technol. 104, 2669 (2019)
DOI URL |
[10] |
D. Wang, C.H. Song, Y.Q. Yang, Y.C. Bai, Mater. Des. 100, 291 (2016)
DOI URL |
[11] | M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.P. Kruth, J. Van Humbeeck, K. Vanmeensel, Addit. Manuf. 23, 402 (2018) |
[12] |
T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Mater. Sci. Eng. A 718, 64 (2018)
DOI URL |
[13] | H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Feng, L.F. Chen, J.Y. Hou, H.J. Xu, Acta Metall. Sin. -Engl. Lett. 34, 495 (2020) |
[14] |
R. Casati, J. Lemke, M. Vedani, J. Mater. Sci. Technol. 32, 738 (2016)
DOI URL |
[15] |
Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG. Asia. Mater. 10, 127 (2018)
DOI URL |
[16] |
M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49, 3011 (2018)
DOI URL |
[17] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today. 21, 354 (2018)
DOI URL |
[18] |
Y. Yin, J. Sun, J. Guo, X. Kan, D. Yang, Mater. Sci. Eng. A 744, 773 (2019)
DOI URL |
[19] | S. Bahl, S. Mishra, K. Yazar, I.R. Kola, K. Chatterjee, S. Suwas, Addit. Manuf. 28, 65 (2019) |
[20] |
K. Saeidi, L. Kvetkova, F. Lofajc, Z.J. Shen, RSC Adv. 5, 20747 (2015)
DOI URL |
[21] |
M. Ma, Z. Wang, X. Zeng, Mater. Sci. Eng. A 685, 265 (2017)
DOI URL |
[22] |
W. Chen, T. Voisin, Y. Zhang, J.-B. Florien, C.M. Spadaccini, D.L. McDowell, T. Zhu, Y.M. Wang, Nat. Commun. 10, 1 (2019)
DOI URL |
[23] |
Z. Li, T. Voisin, J.T. McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King, Y.M. Wang, Int. J. Plasticity. 120, 395 (2019)
DOI URL |
[24] |
F. Khodabakhshi, M. Farshidianfar, A. Gerlich, M. Nosko, V. Trembošová, A. Khajepour, Mater. Sci. Eng. A 756, 545 (2019)
DOI URL |
[25] |
N. Chen, G. Ma, W. Zhu, A. Godfrey, Z. Shen, G. Wu, X. Huang, Mater. Sci. Eng. A 759, 65 (2019)
DOI URL |
[26] |
T. Ronneberg, C.M. Davies, P.A. Hooper, Mater. Des. 189, 108481 (2020)
DOI URL |
[27] |
O. Salman, C. Gammer, A. Chaubey, J. Eckert, S. Scudino, Mater. Sci. Eng. A 748, 205 (2019)
DOI URL |
[28] |
T. Voisin, J.-B. Forien, A. Perron, S. Aubry, N. Bertin, A. Samanta, A. Baker, Y.M. Wang, Acta Mater. 203, 116476 (2021)
DOI URL |
[29] |
M. Stout, P. Follansbee, J. Eng. Mater.-T. ASME 108, 344 (1986)
DOI URL |
[30] |
A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, Acta Mater. 56, 2770 (2008)
DOI URL |
[31] | Y. Wang, E. Ma, Mater. Sci. Eng. A 375, 46 (2004) |
[32] |
A. Husain, P. La, Y. Hongzheng, S. Jie, Materials 13, 3223 (2020)
DOI URL |
[33] |
D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276, 293 (2018)
DOI URL |
[34] |
W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, J. Alloys Compd. 740, 910 (2018)
DOI URL |
[35] |
D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater. Sci. Technol. 35, 1499 (2019)
DOI URL |
[36] | M. Montero Sistiaga, S. Nardone, C. Hautfenne, J. Van Humbeeck, Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM). in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, The University of Texas, Austin, Texas, 8-10 July 2016 |
[37] | L. Ding, H.X. Li, Y.D. Wang, Z.T. Huang, Chin. J. Las. 42, 187 (2015) |
[38] |
K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)
DOI PMID |
[39] |
J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Int. J. Adv. Manuf. Technol. 76, 869 (2015)
DOI URL |
[40] |
C. Elangeswaran, A. Cutolo, G.K. Muralidharan, C. de Formanoir, F. Berto, K. Vanmeensel, B. Van Hooreweder, Int. J. Fatigue 123, 31 (2019)
DOI URL |
[41] |
K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, Z.J. Shen, J. Alloys Compd. 633, 463 (2015)
DOI URL |
[42] | M. Kamariah, W. Harun, N. Khalil, F. Ahmad, M. Ismail, S. Sharif, Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel. in 4th International Conference on Mechanical Engineering Research, Swiss Garden Beach Resort, Malaysia,1-2 August 2017 |
[43] |
J.P. Choi, G.H. Shin, M. Brochu, Y.J. Kim, S.S. Yang, K.T. Kim, D.Y. Yang, C.W. Lee, J.H. Yu, Mater. Trans. 57, 1952 (2016)
DOI URL |
[44] |
I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, A. Esnaola, Int. J. Adv. Manuf. Technol. 51, 639 (2010)
DOI URL |
[45] |
T.M. Mower, M.J. Long, Mater. Sci. Eng. A 651, 198 (2016)
DOI URL |
[46] |
I.A. Segura, L.E. Murr, C.A. Terrazas, D. Bermudez, J. Mireles, V.S.V. Injeti, K. Li, B. Yu, R.D.K. Misra, R.B. Wicker, J. Mater. Sci. Technol. 35, 351 (2019)
DOI |
[47] |
X. Chen, J. Li, X. Cheng, B. He, H. Wang, Z. Huang, Mater. Sci. Eng. A 703, 567 (2017)
DOI URL |
[48] |
E.W. Hart, Acta Metall. 15, 351 (1967)
DOI URL |
[49] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)
DOI URL |
[50] |
R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, A.D. Rollett, JOM 69, 479 (2017)
DOI URL |
[1] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[2] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[3] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[4] | Xiaodong Wang, Chaoyue Chen, Ruixin Zhao, Longtao Liu, Sansan Shuai, Tao Hu, Jiang Wang, Zhongming Ren. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 501-516. |
[5] | Lu Yao, Yeqin He, Ziqiang Wang, Binyi Peng, Guoping Li, Yang Liu. Effect of Heat Treatment on the Wear Properties of Selective Laser Melted Ti-6Al-4V Alloy Under Different Loads [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 517-525. |
[6] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[7] | Haoxiang Wang, Xin Lin, Nan Kang, Zehao Qin, Shuoqing Shi, Jiacong Li, Weidong Huang. Interfacial Characteristics and Mechanical Behavior of Hybrid Manufactured AlSi10Mg-Al6061 Bimetal via Selective Laser Melting and Forging [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 375-388. |
[8] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[9] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[10] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[11] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[12] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[13] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[14] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[15] | Jinyang Liu, Jian Chen, Li Zhou, Bingyao Liu, Yang Lu, Shanghua Wu, Xin Deng, Zhongliang Lu, Zhipeng Xie, Wei Liu, Jianye Liu, Zhi Qu. Role of Co Content on Densification and Microstructure of WC-Co Cemented Carbides Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1245-1254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||