Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (12): 1669-1678.DOI: 10.1007/s40195-021-01267-5
Previous Articles Next Articles
Susana Montecinos1,2,3(), Sebastián Tognana1,3,4, Walter Salgueiro1,3,4
Received:
2020-12-29
Revised:
2021-04-22
Accepted:
2021-05-07
Online:
2021-12-10
Published:
2021-12-10
Contact:
Susana Montecinos
About author:
Susana Montecinos dmonteci@exa.unicen.edu.arSusana Montecinos, Sebastián Tognana, Walter Salgueiro. Indentation Size Effect in β CuAlBe and Cu-2Be Alloys[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1669-1678.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 Calorimetric cycle of the sample (10 °C/min) a Representative stress-strain (σ-ε) curves for CuAlBe samples submitted to a compression test at 1 mm/min and at room temperature b
Fig. 4 P-h curves for single-phase samples of Cu, CuBe and CuAlBe at different maximum loads obtained by instrumented nanoindentation measurements. CuBe sample with precipitates (CuBe_p) is also included a. Variation of the exponent m in the loading curves with the maximum load for each alloy b
Fig. 5 Representative topographic image of a sample with pile-up obtained by AFM on a CuAlBe specimen after an indentation at 9 mN a. Surface depth profile along the line indicated in a, b. 3D image of a, c
Fig. 6 Variation of hrp/hm with the maximum load obtained from the topographic images of the indentations in the different samples: Cu, CuBe and CuAlBe single phases a and CuBe with and without precipitates b
Sample | H0 (GPa) | h* (nm) |
---|---|---|
CuBe | 1.36 | 810 |
CuBe_p | 2.11 | 750 |
CuAlBe | 3.13 | 190 |
Table 1 Values of H0 and h* obtained for each alloy
Sample | H0 (GPa) | h* (nm) |
---|---|---|
CuBe | 1.36 | 810 |
CuBe_p | 2.11 | 750 |
CuAlBe | 3.13 | 190 |
[1] | C. Cissé, M.A. Zaeem, Comput. Mater. Sci. 183, 109808(2020) |
[2] | S. Montecinos, Mater. Des. 68, 215(2015) |
[3] | S. Zareie, A.S. Issa, R.J. Seethaler, A. Zabihollah, Struct. 27, 1535(2020) |
[4] | S. Montecinos, S. Tognana, W. Salgueiro, Trans. Nonferrous Met. Soc. China 29, 2340 (2019) |
[5] | D. Kong, C. Dong, X. Ni, C. Man, K. Xiao, X. Li, Appl. Surf. Sci. 455, 543(2018) |
[6] | S. Montecinos, S. Tognana, W. Salgueiro, J. Alloys Compd. 729, 43(2017) |
[7] | R.J. Rioja, D.E. Laughlin, Acta Metall. 28, 1301(1980) |
[8] | Y.C. Tang, Y.L. Kang, L.J. Yue, X.L. Jiao, Acta Metall Sin. -Engl. Lett. 28, 307(2015) |
[9] | W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3(2004) |
[10] | J. Chen, Y. Shen, W. Liu, B.D. Beake, X. Shi, Z. Wang, Y. Zhang, X. Guo, Mater. Sci. Eng. A 656, 216 (2016) |
[11] | J.L. Loubet, M. Bauer, A. Tonck, S. Bec, B. Gauthier-Manuel, in Nano-indentation with a Surface Force Apparatus, ed. by M. Nastasi, D.M. Parkin, H. Gleiter. Mechanical Properties And Deformation Behavior Of Materials Having Ultra-Fine Microstructures. NATO ASI Series (Series E: Applied Sciences), vol 233 (Springer, Dordrecht, 1993), pp. 429-447 |
[12] | O. Iracheta, C.J. Bennet, W. Sun, Mater. Sci. Eng. A 706, 330 (2017) |
[13] | G.M. Pharr, E.G. Herbert, Y. Gao, Annual Rev Mater. Res. 40, 271(2010) |
[14] | W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411 (1998) |
[15] | Y.V. Milman, A.A. Golubenko, S.N. Dub, Acta Mater. 59, 7480(2011) |
[16] | S.N. Dub, Y.Y. Lim, M.M. Chaudhri, J. Appl. Phys. 107, 043510(2010) |
[17] | W. Zhang, Z. Zhao, J. Fang, P. He, Z. Chao, D. Gong, G. Chen, L. Jiang, J. Alloys Compd. 857, 157601(2021) |
[18] | G.L. Xie, Q.S. Wang, X.J. Mi, B.Q. Xiong, L.J. Peng, Mater. Sci. Eng. A 558, 326 (2012) |
[19] | S. Montecinos, A. Cuniberti, J. Alloys Compd. 457, 332(2008) |
[20] | S. Montecinos, A. Cuniberti, Mater. Sci. Eng. A 600, 176 (2014) |
[21] | J.D. Gale, A. Achuthan, J. Mater. Sci. 49, 5066(2014) |
[22] | G.Z. Voyiadjis, M. Yaghoobi, Curr. Comput. -Aided Drug Des. 7, 321(2017) |
[23] | R. Rodríguez, I. Gutierrez, Mater. Sci. Eng. A 361, 377 (2003) |
[24] | Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix. J. Mech. Phys. Solids 54, 1668 (2006) |
[1] | Shaoheng Sun, Yun Zhang, Zhiyong Xue, Jiankun Lin, Xiaohua Chen. Deformation Mechanism in Fe61Mn18Si11Cr10 Medium Entropy Alloy Under Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1109-1119. |
[2] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[3] | Chunni Jia, Gang Shen, Wenxiong Chen, Baojia Hu, Chengwu Zheng, Dianzhong Li. Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 777-788. |
[4] | Y. R. Ma, H. J. Yang, D. D. Ben, X. H. Shao, Y. Z. Tian, Q. Wang, Z. F. Zhang. Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 534-542. |
[5] | Xiaojuan Fan, Ruitao Qu, Zhefeng Zhang. Relation Between Strength and Hardness of High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1461-1482. |
[6] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[7] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[8] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[9] | Yue Su, Shun-Cun Luo, Liang Meng, Piao Gao, Ze-Min Wang. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 774-788. |
[10] | Jin Hyuk Choi, Gobinda Gyawali, Dhani Ram Dhakal, Bhupendra Joshi, Soo Wohn Lee. Electrodeposited Ni-W-TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 573-582. |
[11] | Sami Bin Humam, Gobinda Gyawali, Dhani Ram Dhakal, Jin-Hyuk Choi, Soo Wohn Lee. Effect of Pulse and Direct Current Electrodeposition on Microstructure, Surface, and Scratch Resistance Properties of Ni-W Alloy and Ni-W-SiC Composite Coatings [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1321-1330. |
[12] | Wen Wang, Peng Han, Pai Peng, Ting Zhang, Qiang Liu, Sheng-Nan Yuan, Li-Ying Huang, Hai-Liang Yu, Ke Qiao, Kuai-She Wang. Friction Stir Processing of Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 43-57. |
[13] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
[14] | Shuang-Jian Chen, Xiang-Xi Ye, D.K. L.Tsang, Li Jiang, Chao-Wen Li, Kun Yu, Zhi-Jun Li . Microstructure and Its Influence on the Mechanical Properties of Ni-28W-6Cr-Based Alloy-Welded Joints by GTAW [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1032-1040. |
[15] | N. Thangapandian, S. Balasivanandha Prabu , K. A. Padmanabhan. Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 835-844. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||