Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (7): 932-942.DOI: 10.1007/s40195-020-01170-5
Previous Articles Next Articles
Yingying Shen1,2, Qing Jia1(), Xu Zhang1, Ronghua Liu1, Yumin Wang1, Yuyou Cui1, Rui Yang1(
)
Received:
2020-06-10
Revised:
2020-08-24
Accepted:
2020-09-10
Online:
2021-01-02
Published:
2021-01-02
Contact:
Qing Jia,Rui Yang
About author:
Rui Yang, ryang@imr.ac.cnYingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 a Optical micrograph of fiber distribution and microstructure of the γ-TiAl matrix alloy on the cross section of the composite, b SEM image showing microstructure of the TiAl matrix alloy prepared by suction casting (white lines indicate the lamellar orientation)
Fig. 4 Interface reaction layer of the composite: a interface morphology between the fiber and the γ-TiAl matrix, b morphology of interface reaction layer between the fiber and titanium alloy coating
Fig. 5 Microstructure of interface reaction layer of the composite under TEM and selected area electron diffraction (SAED) patterns of the products (I: fine-grain TiC layer, and II: coarse-grain TiC layer)
Sample number | Rp0.2 (MPa) | Rm (MPa) | A (%) | |
---|---|---|---|---|
TiAl matrix alloy at room temperature | 1 | - | 648 | 0.20 |
2 | - | 658 | 0.12 | |
3 | - | 646 | 0.10 | |
SiCf/TiAl composite at room temperature | 4 | - | 722 | 0.14 |
5 | - | 682 | 0.19 | |
6 | - | 707 | 0.20 | |
TiAl matrix alloy at 800 °C | 7 | 615 | 713 | 1.0 |
8 | 541 | 658 | 1.0 | |
9 | 551 | 693 | 1.0 | |
SiCf/TiAl composite at 800 °C | 10 | 591 | 777 | 1.0 |
11 | 651 | 807 | 2.0 | |
12 | 588 | 814 | 3.0 |
Table 1 Tensile properties of TiAl alloys and SiCf/TiAl composites at different temperatures
Sample number | Rp0.2 (MPa) | Rm (MPa) | A (%) | |
---|---|---|---|---|
TiAl matrix alloy at room temperature | 1 | - | 648 | 0.20 |
2 | - | 658 | 0.12 | |
3 | - | 646 | 0.10 | |
SiCf/TiAl composite at room temperature | 4 | - | 722 | 0.14 |
5 | - | 682 | 0.19 | |
6 | - | 707 | 0.20 | |
TiAl matrix alloy at 800 °C | 7 | 615 | 713 | 1.0 |
8 | 541 | 658 | 1.0 | |
9 | 551 | 693 | 1.0 | |
SiCf/TiAl composite at 800 °C | 10 | 591 | 777 | 1.0 |
11 | 651 | 807 | 2.0 | |
12 | 588 | 814 | 3.0 |
Fig. 7 Fracture surfaces of the different samples: a TiAl matrix alloy at room temperature, b SiCf/TiAl composite at room temperature, c TiAl matrix alloy at 800 °C, d SiCf/TiAl composite at 800 °C.
Room temperature | 800 °C | |
---|---|---|
\({V}_{\mathrm{f}}\) (%) | 1.8 | 1.8 |
\({\sigma }_{\mathrm{f}}\) (MPa) | 3500 | 3150 |
\({\sigma }_{\mathrm{m}}\) (MPa) | 650 | 688 |
\({\sigma }_{\mathrm{comp}}\) (MPa) | 701 | 732 |
Table 2 Strength of composites estimated by the rule of mixture
Room temperature | 800 °C | |
---|---|---|
\({V}_{\mathrm{f}}\) (%) | 1.8 | 1.8 |
\({\sigma }_{\mathrm{f}}\) (MPa) | 3500 | 3150 |
\({\sigma }_{\mathrm{m}}\) (MPa) | 650 | 688 |
\({\sigma }_{\mathrm{comp}}\) (MPa) | 701 | 732 |
Fig. 9 Fracture morphologies at room temperature of a matrix alloy, b fibers in the composite, c crack propagation directly from the matrix toward the fiber, d crack deflection along the interface layer, e locally enlarged view of the surface of the fiber pullout, flocally enlarged view of the interfacial reaction layer
Fig. 10 Fracture morphologies at 800 °C of a matrix alloy, b fibers in the composite, c broken fibers on the fracture surface, d interface debonding along the interface layer, e locally enlarged view of the interfacial reaction layer, f interface debonding between the SiC and the tungsten core
[1] |
C. Leyens, J. Hausmann, J. Kumpfert , Adv. Eng. Mater. 5, 399(2003)
DOI URL |
[2] |
X. Kong, Y.M. Wang, X. Zhang, Q. Yang, G.X. Zhang, L.N. Yang, R. Yang, Acta Metall. Sin. (Engl. Lett.) 32, 1244(2019)
DOI URL |
[3] |
B.S. Han, Y.J. Xu, E.Y. Guo, T. Jing, H.L. Hou, L.S. Luo, Acta Metall. Sin. (Engl. Lett.) 31, 945(2018)
DOI URL |
[4] |
X. Zhang, Y.M. Wang, J.F. Lei, R. Yang , Acta Metall. Sin. 48, 1306(2012)
DOI URL |
[5] | B.S. Majumdar, G.M. Newaz, J.R. Ellis , Metall. Trans. A 24, 1597 (1993) |
[6] | D. Bettge, B. Günther, W. Wedell, P.D. Portella, J. Hemptenmacher, P.W.M. Peters, B. Skrotzki, Mater. Sci. Eng. A 452-453, 536(2007) |
[7] | R.A. MacKay, P.K. Brindley, F.H. Froes, JOM 43, 23 (1991) |
[8] | S. Ochiai, M. Yagihashi, K. Osamura , Intermetallics 2, 1 (1994) |
[9] | S. Djanarthany, J.C. Viala, J. Bouix , Mater. Sci. Eng. A 300, 211 (2001) |
[10] | P.R. Smith, J.A. Graves, C.G. Rhodes , Metall. Mater. Trans. A 25, 1267 (1994) |
[11] | S.F. Baumann, P.K. Brindley, S.D. Smith , Metall. Trans. A 21, 1559 (1990) |
[12] | R. Yang , Acta Metall. Sin. 51, 129(2015) |
[13] | Y.W. Kim , JOM 46, 30 (1994) |
[14] | C.M. Ward-Close, R. Minor, P.J. Doorbar, Intermetallics 4, 217 (1996) |
[15] |
G.K. Goo, J.A. Graves, M.L. Mecartney , Scr. Metal. Mater. 26, 1043(1992)
DOI URL |
[16] | G.X. Zhang, Q. Kang, G.P. Li, N.L. Shi, D. Li , Acta Metall. Sin. 39, 329(2003) |
[17] | X. Luo, C. Li, Y.Q. Yang, H.M. Xu, X.Y. Li, S. Liu, P.T. Li , Trans. Nonferrous Met. Soc. China 26, 1317 (2016) |
[18] |
K. Zhu, W. Yu, Y. Aman, T. Jing , J. Mater. Sci. 51, 8747(2016)
DOI URL |
[19] | M. Wood, M. Ward-Close , Mater. Sci. Eng. A 192/193, 590 (1995) |
[20] | J.F. Silvain, J.C. Bihr, Y. Lepetitcorps , Composites 27A, 691 (1996) |
[21] | W. Zhang, Y.Q. Yang, G.M. Zhao, B. Huang, Z.Q. Feng, X. Luo, M.H. Li, J.H. Lou , Intermetallics 33, 54 (2013) |
[22] | W. Zhang, Y.Q. Yang, G.M. Zhao, B. Huang, M.H. Li, X. Luo, S. Ouyang , Intermetallics 39, 5 (2013) |
[23] | W. Zhang, Y.Q. Yang, G.M. Zhao, Z.Q. Feng, B. Huang, X. Luo, M.H. Li, Y.X. Chen , Intermetallics 50, 14 (2014) |
[24] |
B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer , Mater. High Temp. 33, 549(2016)
DOI URL |
[25] |
D. Zhang, Y. Sun, Y. Zhao, T. Wang, J. Chen, H. Li, C. Ma , Rare Met. 30, 524(2011)
DOI URL |
[26] | Z.Q. Dai, Y.Q. Yang, W. Zhang, G.M. Zhao, X. Luo, B. Huang , Rare Mater. Eng. 41, 790(2012) |
[27] | S. Ochial, K. Osamura , Influences of Matrix Ductility. Metall. Trans. A 21, 971 (1990) |
[28] | C.B. Zhao, Y.M. Wang, G.X. Zhang, Q. Yang, X. Zhang, L.N. Yang, R. Yang , Mater. Sci. Technol. 33, 1378(2017) |
[29] | S.M. Jeng, J.M. Yang, C.J. Yang , Mater. Sci. Eng. A318, 169(1991) |
[30] | D.C. Cardona, C. Barne, P. Bowen , Composites 24, 122 (1993) |
[1] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[2] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[3] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[4] | Sahayam Joyson Abraham, Isaac Dinaharan, Jebaraj David Raja Selvam, Esther Titilayo Akinlabi. Microstructural Characterization and Tensile Behavior of Rutile (TiO2)-Reinforced AA6063 Aluminum Matrix Composites Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 52-62. |
[5] | Xin-Yu Lv, An-Ping Dong, Jun Wang, Da Shu, Bao-De Sun. Influence Factors of Aluminum-Slag Interfacial Reaction Under Electric Field [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 753-761. |
[6] | Yong-Gang Deng, Hong-Shuang Di, Jie-Cen Zhang. Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1141-1148. |
[7] | P.M.Ajith, P.Sathiya, S.Aravindan. Experimental Investigation on Friction Welding of UNS S32205 Duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 995-1007. |
[8] | Ying Sun, Xifeng Li, Xiangyu Yu, Delong Ge, Jun Chen, Jieshi Chen. Fracture Morphologies of Advanced High Strength Steel During Deformation [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 101-106. |
[9] | Chao XIONG, Yingche MA, Bo CHEN, Kui LIU and Yiyi LI. Modeling of Filling and Solidification Process for TiAl Exhaust Valves During Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 33-48. |
[10] | Jianping TAN, Guozhen WANG, Fuzhen XUAN and Shan-Tung TU. Creep crack growth in a Cr-Mo-V type steel: experimental observation and prediction [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 81-91. |
[11] | S. Baez, I. Betancourt, I.A. Figueroa. Synthesis and characterization of bulk composite Fe-Si-B alloys with small concentration of Nb and Mo [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6): 401-408. |
[12] | G.Y. Li. INVESTIGATION ON HOT DUCTILITY AND STRENGTH OF CONTINUOUS CASTING SLAB FOR AH32 STEEL [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(1): 75-78 . |
[13] | Y.S. Sun, W.M. Zhang, X.G. Min. TENSILE STRENGTH AND CREEP RESISTANCE OF Mg-9Al-1ZnBASED ALLOYS WITH CALCIUM ADDITION [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(5): 330-334 . |
[14] | X.H.Qu; J.L. Fan, Y.M. Li and B. Y Huang(The State Key Laboratory for Powder Metallurgy, Central South University of Technology, Changsha410083, China). SYNTHESIS AND SOLID STATE SINTERING OF W-Ni-Fe NANO-COMPOSITE POWDERS [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(3): 917-920. |
[15] | Y. Yan; C.B. Zhang and B.R. Liu (Box 104, College of Science, Northeastern University Shenyang 110006, China). SUPERPLASTICAL DEFORMATION AND FRACTURE MECHANISM 0F A SiC_p/2024Al COMPOSITE [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(6): 1295-1302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||