Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (4): 452-460.DOI: 10.1007/s40195-018-0859-5
• Orginal Article • Previous Articles Next Articles
Hui Wang1(), Cheng Lu1, Kiet Tieu1, Yu Liu1, Rui Wang1, Jintao Li1
Received:
2018-08-30
Revised:
2018-10-25
Online:
2019-04-10
Published:
2019-04-19
Contact:
Wang Hui
About author:
Dr. Kun-Kun Deng was born in 1983 and was awarded Ph. D in Harbin University of Technology in 2011. After graduation, he worked in the College of Materials Science and Engineering, Taiyuan University of Technology. At the same time, he continued his research work on the design, fabrication and processing of advanced Mg-based material in. Now, he is the vice chairman of Youth Committee in Magnesium Alloy Branch of Chinese Materials Research Society. He was denoted as young academic pacemaker of Shanxi Province in 2018. He has held two projects of National Nature Science Foundation of China, one project of Specialized Research Fund for the Doctoral Program of Higher Education, one Project of International Cooperation in Shanxi and two projects of Natural Science Foundation of Shanxi. He has published more than 60 articles. The time cited is more than 840 (without selfcitations), and the H-index is 22. In addition, he has published one academic monograph and acquired eight Chinese patents.
Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu, Rui Wang, Jintao Li. Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 452-460.
Add to citation manager EndNote|Ris|BibTeX
Case A | Case B | Case C | Case D | |
---|---|---|---|---|
Initial orientation | roCube (00\(\bar{1}\))[ | Goss (011)[ | Copper (112)[11\(\bar{1}\)] | Brass (\(\bar{1}\)01)[1\(\bar{2}\)1] |
Orientation stability | Unstable | Stable | Semi-stable | Stable |
Activated slip systems | Symmetrical | Symmetrical | Asymmetrical | Asymmetrical |
Deformation | Rolling | Rolling | Rolling | PSC |
Reduction | 50% | 30% | 50% | 43% |
Friction coefficient | 0.25 | 0.25 | 0.11 | 0.1 |
Diameter of rolls | 75 mm | 75 mm | 310 mm | ∞ |
Initial thickness | 3.0 mm | 2.8 mm | 4.0 mm | 7.0 mm |
Reference | [ | [ | [ | [ |
Table 1 Simulation conditions of four simulation cases
Case A | Case B | Case C | Case D | |
---|---|---|---|---|
Initial orientation | roCube (00\(\bar{1}\))[ | Goss (011)[ | Copper (112)[11\(\bar{1}\)] | Brass (\(\bar{1}\)01)[1\(\bar{2}\)1] |
Orientation stability | Unstable | Stable | Semi-stable | Stable |
Activated slip systems | Symmetrical | Symmetrical | Asymmetrical | Asymmetrical |
Deformation | Rolling | Rolling | Rolling | PSC |
Reduction | 50% | 30% | 50% | 43% |
Friction coefficient | 0.25 | 0.25 | 0.11 | 0.1 |
Diameter of rolls | 75 mm | 75 mm | 310 mm | ∞ |
Initial thickness | 3.0 mm | 2.8 mm | 4.0 mm | 7.0 mm |
Reference | [ | [ | [ | [ |
\(n\) | \(\dot{\gamma }_{0} \left( {{\text{s}}^{ - 1} } \right)\) | \(h_{0}\) (MPa) | \(h_{\text{s}}\) (MPa) | \(\tau_{1}\) (MPa) | \(\tau_{0}\) (MPa) | \(q\) |
---|---|---|---|---|---|---|
300 | 1E-04 | 100 | 0.01 | 6.3 | 6 | 1 |
Table 2 Parameters used in the Bassani-Wu hardening model
\(n\) | \(\dot{\gamma }_{0} \left( {{\text{s}}^{ - 1} } \right)\) | \(h_{0}\) (MPa) | \(h_{\text{s}}\) (MPa) | \(\tau_{1}\) (MPa) | \(\tau_{0}\) (MPa) | \(q\) |
---|---|---|---|---|---|---|
300 | 1E-04 | 100 | 0.01 | 6.3 | 6 | 1 |
Fig. 4 Distribution of a shear strain on slip system a1 (\(\gamma_{{{\text{a}}1}}\)) and b1 (\(\gamma_{{{\text{b}}1}}\)), b imbalance ratio between \(\gamma_{{{\text{a}}1}}\) and \(\gamma_{{{\text{b}}1}}\), \(\left( {\gamma_{{{\text{a}}1}} - \gamma_{{{\text{b}}1}} } \right)\)/max (\(\gamma_{{{\text{a}}1}}\), \(\gamma_{{{\text{b}}1}}\))
Fig. 6 Distribution of a shear strain on slip system c2 (\(\gamma_{{{\text{c}}2}}\)) and a2 (\(\gamma_{{{\text{a}}2}}\)), b imbalance ratio between \(\gamma_{{{\text{c}}2}}\) and \(\gamma_{{{\text{a}}2}}\), \(\left( {\gamma_{{{\text{c}}2}} - \gamma_{{{\text{a}}2}} } \right)\)/max (\(\gamma_{{{\text{c}}2}}\), \(\gamma_{{{\text{a}}2}}\))
Fig. 7 Distribution of a TD-rotation and deformed FE mesh, b TD-rotation and \(- \;\gamma_{XY}\), c shear strain on slip system a1 (\(\gamma_{{{\text{a}}1}}\)) and c3 (\(\gamma_{{{\text{c}}3}}\)) along the thickness
Orientation | Matrix band | Shear strain on slip systems | \({\varOmega}_{\text{TD}}^{\text{P}}\) | \({\varOmega}_{\text{TD}}^{ *}\) | Macroscopic shear strain \(\gamma_{XY}\) | \({\varOmega}_{\text{TD}}\) | Relation \({\varOmega}_{\text{TD}} ={\varOmega}_{\text{TD}}^{\text{P}} +{\varOmega}_{\text{TD}}^{ *}\) |
---|---|---|---|---|---|---|---|
roCube | M1 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} < \gamma_{{{\text{b}}1 - {\text{b}}2}}\) | -?TD | +TD | - | -?TD | (-?)?=?(-?)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M2 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{b}}1 - {\text{b}}2}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) | |
Goss | M1 | \(\gamma_{{{\text{c}}2 - {\text{c}}3}} < \gamma_{{{\text{a}}2 - {\text{a}}3}}\) | -?TD | +?TD | - | -?TD | (-)?=?(-)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M2 | \(\gamma_{{{\text{c}}2 - {\text{c}}3}} > \gamma_{{{\text{a}}2 - {\text{a}}3}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) | |
Copper | M2 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M1a | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | +?TD | +?TD | + | +?TD | (+)?=?(+)?+?(+) | |
M1b | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} < \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | -?TD | +?TD | + | +?TD | (+)?=?(-)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?<?\({\varOmega}_{\text{TD}}^{ *}\) |
Table 3 Deformation in matrix bands of roCube, Goss, and Copper
Orientation | Matrix band | Shear strain on slip systems | \({\varOmega}_{\text{TD}}^{\text{P}}\) | \({\varOmega}_{\text{TD}}^{ *}\) | Macroscopic shear strain \(\gamma_{XY}\) | \({\varOmega}_{\text{TD}}\) | Relation \({\varOmega}_{\text{TD}} ={\varOmega}_{\text{TD}}^{\text{P}} +{\varOmega}_{\text{TD}}^{ *}\) |
---|---|---|---|---|---|---|---|
roCube | M1 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} < \gamma_{{{\text{b}}1 - {\text{b}}2}}\) | -?TD | +TD | - | -?TD | (-?)?=?(-?)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M2 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{b}}1 - {\text{b}}2}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) | |
Goss | M1 | \(\gamma_{{{\text{c}}2 - {\text{c}}3}} < \gamma_{{{\text{a}}2 - {\text{a}}3}}\) | -?TD | +?TD | - | -?TD | (-)?=?(-)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M2 | \(\gamma_{{{\text{c}}2 - {\text{c}}3}} > \gamma_{{{\text{a}}2 - {\text{a}}3}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) | |
Copper | M2 | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | +?TD | -?TD | + | +?TD | (+)?=?(+)?+?(-), \({\varOmega}_{\text{TD}}^{\text{P}}\)?>?\({\varOmega}_{\text{TD}}^{ *}\) |
M1a | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} > \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | +?TD | +?TD | + | +?TD | (+)?=?(+)?+?(+) | |
M1b | \(\gamma_{{{\text{a}}1 - {\text{a}}2}} < \gamma_{{{\text{c}}3 - {\text{d}}3}}\) | -?TD | +?TD | + | +?TD | (+)?=?(-)?+?(+), \({\varOmega}_{\text{TD}}^{\text{P}}\)?<?\({\varOmega}_{\text{TD}}^{ *}\) |
|
[1] | Zihao Tan, Lin Yang, Xinguang Wang, Yunling Du, Lihua Ye, Guichen Hou, Yanhong Yang, Jinlai Liu, Jide Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. |
[2] | Min Huang, Gong Zhang, Dong Wang, Jia-Sheng Dong, Li Wang, Lang-Hong Lou. Microstructure and Stress-Rupture Property of Large-Scale Complex Nickel-Based Single Crystal Casting [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 887-896. |
[3] | Zhong-Jiao Zhou,Da-Qian Yu,Li Wang,Lang-Hong Lou. Effect of Skew Angle of Holes on the Thermal Fatigue Behavior of a Ni-based Single Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 185-192. |
[4] | Guo-Wei Wang,Jing-Jing Liang,Yi-Zhou Zhou,Tao Jin,Xiao-Feng Sun,Zhuang-Qi Hu. Effects of Substrate Crystallographic Orientations on Microstructure in Laser Surface-Melted Single-Crystal Superalloy: Theoretical Analysis [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 763-773. |
[5] | Honggang QI, Yafang GUO, Xiaozhi TANG, Shuang XU. Atomistic simulation of the structural evolution in magnesium single crystal under c-axis tension [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 487-494. |
[6] | Hongmin PEN,Qingshun BAI,Yingchun LIANG,Mingjun CHEN. Multiscale simulation of nanometric cutting of single crystal copper---effect of different cutting speeds [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 440-446. |
[7] | Haipeng JIN,Jiarong LI,Dong PAN. Application of inverse method to estimation of boundary conditions during investment casting simulation [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 429-434. |
[8] | Y.S. Yang, X.H. Feng, G.F. Cheng, Y.J. Li , Z.Q. Hu. SOLIDIFICATION OF NICKEL-BASED SINGLE CRYSTAL SUPERALLOY BY ELECTRIC FIELD [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(6): 679-685 . |
[9] | D.H.Kim. EFFECT OF CARBON AND BORON ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A SINGLE CRYSTAL SUPERALLOY RR 2072 [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(1): 33-38 . |
[10] | M.Sakaguchi, M.Okazaki. MICROMECHANICS OF THE DAMAGE-INDUCED CELLULAR MICROSTRUCTURE IN SINGLE CRYSTAL Ni-BASED SUPERALLOYS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 361-368 . |
[11] | R.Wang. STUDY OF Ag DIFFUSION INTO Cu SINGLE CRYSTALS BY RUTHERFORD BACKSCATTERING SPECTROMETRY [J]. Acta Metallurgica Sinica (English Letters), 2003, 16(5): 332-334 . |
[12] | Y.X.Li, G.Z.Xu,J.P.Qu, F.G.Liu and B.W. Wang Hebei University of Technology, Tianjin 300130, China C. Zhao Tianjin University, Tianjin 300072, China S.X. Gao Hebei Normal University,Shijiazhuang 050091, China C.C. Tang, G.H.Wu, J.H.Wang, J.Du and W.S.Zhan State Key Laboratory for Magnetism, Institute of Physics, CAS, Beijing 100080, China. THE EFFECT STRESS ON THE MAGNETOSTRICTION IN TWIN FREE SINGLE CRYSTALS Tb y Dy 1-y (Fe 1-x T x) 2 (T=Al,Mn) [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 874-876. |
[13] | Z.F. Yue and Z.Z. Lu(Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China )Manuscript received. RAFTING PREDICTION CRITERION FOR NICKEL-BASE SINGLE CRYSTALS UNDER MULTIAXIAL STRESSES AND CRYSTALLOGRAPHIC ORIENTATION DEPENDENCE OF CREEP BEHAVIOR [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(2): 149-154. |
[14] | Author X.A. Zhang1), H.Q. Xia1), Z.T. Wu1), Y.F. Han1), R. Shi2) and G.X. Hu2) \= 1) Mechanical Properties Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095,China2) The State Education Commission Open Research Laboratory for High Temperature. STUDY ON THE THREESTAGE CREEP OF THE DD3SINGLE CRYSTAL SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 116-123. |
[15] | Author C.D. Zhou1,2), J.X. Yu1), X.P. Dong1), Y.H. Zhang1), C.Q. Sun3) and T.F. Li4) 1) The State Education Commission Open Research Laboratory for High Temperature Materials and Testing, Shanghai Jiao Tong University, Shanghai 200030, China2) Shanghai Enhanced Lab of Ferrometallurgy, Shanghai University, Shanghai 200072, China3) Institute of Aeronautical Materials, Beijing 100095, China 4) Institute of Corrosion and Protection of Metals, The Chinese Academy of Sciences, Shenyang 110015, ChinaManuscript received 18 October 1998. HIGH TEMPERATURE TENSILE FRACTURE BEHAVIOR OF ORIENTED DD100 SINGLE CRYSTAL SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 124-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||