Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (9): 878-886.DOI: 10.1007/s40195-017-0563-x
Special Issue: 高温合金专辑(2016-2017); 2017-2018高温合金专辑
• Orginal Article • Previous Articles Next Articles
Z. D. Fan1,3, D. Wang1, C. Liu1, G. Zhang1, J. Shen1, L. H. Lou1, J. Zhang1,2
Online:
2017-09-30
Published:
2017-10-26
About author:
1 The authors contributed equally to this work.
Z. D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L. H. Lou, J. Zhang. Low-Cycle Fatigue Properties of Nickel-Based Superalloys Processed by High-Gradient Directional Solidification[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 878-886.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Re | W | Mo | Ta | Cr | Co | Al | Ti | C | Ni |
---|---|---|---|---|---|---|---|---|---|---|
DD10 | - | 4 | 0.5 | 5 | 12 | 6 | 4 | 4 | 0.03 | Bal. |
DZ53 | 3 | 9 | 2 | 7 | 6 | 9 | 6 | 1 | 0.1 | Bal. |
Table 1 Nominal chemical compositions of DD10 and DZ53 alloys (wt%)
Alloy | Re | W | Mo | Ta | Cr | Co | Al | Ti | C | Ni |
---|---|---|---|---|---|---|---|---|---|---|
DD10 | - | 4 | 0.5 | 5 | 12 | 6 | 4 | 4 | 0.03 | Bal. |
DZ53 | 3 | 9 | 2 | 7 | 6 | 9 | 6 | 1 | 0.1 | Bal. |
Total strain range (%) | Fatigue life | Deviation from [ | Fatigue life | Deviation from [ |
---|---|---|---|---|
1253 K | 1033 K | |||
2.4 | 114 | 3 | 20 | 5 |
2.0 | 226 | 6 | 444 | 6 |
1.8 | - | - | 1204 | 5 |
1.6 | 348 | 7 | 2360 | 4 |
1.4 | - | - | 10,344 | 6 |
1.2 | 1144 | 6 | - | - |
1.0 | 2174 | 7 | - | - |
2964 | 5 | |||
0.8 | 7534 | 3 | - | - |
5960 | 8 |
Table 2 Fatigue properties of DD10 solidified by HRS at 1253 and 1033 K
Total strain range (%) | Fatigue life | Deviation from [ | Fatigue life | Deviation from [ |
---|---|---|---|---|
1253 K | 1033 K | |||
2.4 | 114 | 3 | 20 | 5 |
2.0 | 226 | 6 | 444 | 6 |
1.8 | - | - | 1204 | 5 |
1.6 | 348 | 7 | 2360 | 4 |
1.4 | - | - | 10,344 | 6 |
1.2 | 1144 | 6 | - | - |
1.0 | 2174 | 7 | - | - |
2964 | 5 | |||
0.8 | 7534 | 3 | - | - |
5960 | 8 |
Total strain range (%) | Fatigue life | Deviation from [ | Fatigue life | Deviation from [ |
---|---|---|---|---|
1253 K | 1033 K | |||
2.4 | 100 | 5 | 100 | 3 |
67 | 7 | |||
2.0 | 236 | 7 | 764 | 5 |
1.8 | - | - | 1356 | 5 |
1.6 | 426 | 8 | 5400 | 2 |
1.4 | 582 | 3 | 11,356 | 4 |
1.2 | 1312 | 8 | - | - |
842 | 8 | - | - | |
1.0 | 1768 | 3 | - | - |
2028 | 7 | |||
0.8 | 5620 | 4 | - | - |
Table 3 Fatigue properties of DD10 solidified by LMC at 1253 and 1033 K
Total strain range (%) | Fatigue life | Deviation from [ | Fatigue life | Deviation from [ |
---|---|---|---|---|
1253 K | 1033 K | |||
2.4 | 100 | 5 | 100 | 3 |
67 | 7 | |||
2.0 | 236 | 7 | 764 | 5 |
1.8 | - | - | 1356 | 5 |
1.6 | 426 | 8 | 5400 | 2 |
1.4 | 582 | 3 | 11,356 | 4 |
1.2 | 1312 | 8 | - | - |
842 | 8 | - | - | |
1.0 | 1768 | 3 | - | - |
2028 | 7 | |||
0.8 | 5620 | 4 | - | - |
Fig. 1 OM micrographs of DD10 and DZ53 alloys after heat treatment: a DD10 alloy solidified by HRS, b DD10 alloy solidified by LMC, c DZ53 alloy solidified by HRS d DZ53 alloy solidified by LMC
Fig. 3 Images of micropores in DD10 and DZ53 alloys after heat treatment: a DD10 alloy solidified by HRS, b DD10 alloy solidified by LMC, c DZ53 alloy solidified by HRS, d DZ53 alloy solidified by LMC
Fig. 4 LCF properties of DD10 and DZ53 alloys solidified by HRS and LMC techniques at different temperatures: a DD10 alloy at 1253 K, b DD10 alloy at 1033 K, c DZ53 alloy at 1253 K
Alloy | DS process | PDAS (μm) | Remaining eutectics (%) | Volume fraction of microporosity (%) | Maximum equivalent radius of microporosity (μm) |
---|---|---|---|---|---|
DD10 | HRS | 360 ± 27 | No | 0.2 | 20 |
LMC | 155 ± 10 | No | 0.08 | 15 | |
DZ53 | HRS | 345 ± 21 | 0.51 ± 0.1 | 0.45 | 28 |
LMC | 145 ± 12 | 0.02 ± 0.006 | 0.1 | 16 |
Table 4 Quantitative comparison of PDAS, eutectics and microporosity
Alloy | DS process | PDAS (μm) | Remaining eutectics (%) | Volume fraction of microporosity (%) | Maximum equivalent radius of microporosity (μm) |
---|---|---|---|---|---|
DD10 | HRS | 360 ± 27 | No | 0.2 | 20 |
LMC | 155 ± 10 | No | 0.08 | 15 | |
DZ53 | HRS | 345 ± 21 | 0.51 ± 0.1 | 0.45 | 28 |
LMC | 145 ± 12 | 0.02 ± 0.006 | 0.1 | 16 |
Fig. 5 LCF fractographs of DD10 alloy under total strain range of 1.2%: a a low-magnification fractograph of HRS alloy at 1253 K, b a low-magnification fractograph of LMC alloy at 1253 K, c longitudinal section microstructure of HRS alloy at 1253 K, d a low-magnification fractograph of HRS alloy at 1033 K, e a high-magnification fractograph of HRS alloy at 1033 K, f a low-magnification fractograph of LMC alloy at 1033 K, g a high-magnification fractograph of LMC alloy at 1033 K
Alloy | DS process | Temperature (K) | 0.2% YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|---|
DD10 | HRS | 1033 | 1110 | 1330 | 13.2 |
LMC | 1121 | 1310 | 14.2 | ||
HRS | 1253 | 392 | 636 | 24.7 | |
LMC | 405 | 640 | 25.1 | ||
DZ53 | HRS | 1253 | 815 | 597 | 12.5 |
LMC | 844 | 613 | 23.6 |
Table 5 Tensile properties of DD10 and DZ53 alloys solidified by HRS and LMC techniques
Alloy | DS process | Temperature (K) | 0.2% YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|---|
DD10 | HRS | 1033 | 1110 | 1330 | 13.2 |
LMC | 1121 | 1310 | 14.2 | ||
HRS | 1253 | 392 | 636 | 24.7 | |
LMC | 405 | 640 | 25.1 | ||
DZ53 | HRS | 1253 | 815 | 597 | 12.5 |
LMC | 844 | 613 | 23.6 |
Fig. 6 LCF fractographs of DZ53 alloy under total strain range of 1.2% at 1253 K: a a low-magnification fractograph of HRS alloy, b a low-magnification fractograph of LMC alloy, c a high-magnification fractograph of HRS alloy, d a high-magnification fractograph of LMC alloy, e, f longitudinal section microstructure of HRS alloy
|
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[5] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[6] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[7] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[8] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[9] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[11] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[14] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[15] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||