Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (2): 173-181.DOI: 10.1007/s40195-014-0183-7
• Orginal Article • Previous Articles Next Articles
Rui Chen, Qing-Yan Xu(), Bai-Cheng Liu
Received:
2014-03-11
Revised:
2014-08-29
Online:
2015-02-10
Published:
2015-07-23
Rui Chen, Qing-Yan Xu, Bai-Cheng Liu. Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 173-181.
Add to citation manager EndNote|Ris|BibTeX
Properties and symbol | Al-4 wt%Cu-1 wt%Mg | Ref. |
---|---|---|
Initial compositions \( w_{i}^{0} \) (wt%) | \( w_{\text{Cu}}^{0} \) = 4.0 \( w_{\text{Mg}}^{0} \) = 1.0 | |
Liquidus temperature \( T_{\text{L}}^{\text{liq}} (w_{i}^{0} ) \) (K) | 918.2 | |
Solute diffusion coefficient \( D_{i}^{u} \) (m2·s-1) | \( D_{\text{Cu}}^{\text{L}} = 1.05 \times 10^{ - 7} e^{( - 2856/T)} \) | [ |
\( D_{\text{Mg}}^{\text{L}} = 9.9 \times 10^{ - 5} e^{( - 8610/T)} \) | [ | |
\( D_{\text{Cu}}^{\text{S}} { = 4} . 8\times 1 0^{ - 5} e^{{ ( { - 16069/}T)}} \) | [ | |
\( D_{\text{Mg}}^{\text{S}} = 6.23 \times 10^{ - 4} e^{( - 13813/T)} \) | [ | |
Gibbs-Thomson coefficient Γ (K·m) | 2.4 × 10-7 | |
Anisotropy coefficient \( \varepsilon \) | 0.04 | |
Latent heat of fusion L (J m-3 K-1) | 9.5 × 108 | [ |
Density ρ (kg m-3) | 2,600 | |
Specific heat c p (J kg-1 K-1) | 1,070 | |
Time step δt (s) | Δx 2/4.5max (\( D_{\text{Cu}}^{\text{L}} ,\;D_{\text{Mg}}^{\text{L}} \)) |
Table 1 Properties of Al-Cu-Mg alloy used in the following simulations
Properties and symbol | Al-4 wt%Cu-1 wt%Mg | Ref. |
---|---|---|
Initial compositions \( w_{i}^{0} \) (wt%) | \( w_{\text{Cu}}^{0} \) = 4.0 \( w_{\text{Mg}}^{0} \) = 1.0 | |
Liquidus temperature \( T_{\text{L}}^{\text{liq}} (w_{i}^{0} ) \) (K) | 918.2 | |
Solute diffusion coefficient \( D_{i}^{u} \) (m2·s-1) | \( D_{\text{Cu}}^{\text{L}} = 1.05 \times 10^{ - 7} e^{( - 2856/T)} \) | [ |
\( D_{\text{Mg}}^{\text{L}} = 9.9 \times 10^{ - 5} e^{( - 8610/T)} \) | [ | |
\( D_{\text{Cu}}^{\text{S}} { = 4} . 8\times 1 0^{ - 5} e^{{ ( { - 16069/}T)}} \) | [ | |
\( D_{\text{Mg}}^{\text{S}} = 6.23 \times 10^{ - 4} e^{( - 13813/T)} \) | [ | |
Gibbs-Thomson coefficient Γ (K·m) | 2.4 × 10-7 | |
Anisotropy coefficient \( \varepsilon \) | 0.04 | |
Latent heat of fusion L (J m-3 K-1) | 9.5 × 108 | [ |
Density ρ (kg m-3) | 2,600 | |
Specific heat c p (J kg-1 K-1) | 1,070 | |
Time step δt (s) | Δx 2/4.5max (\( D_{\text{Cu}}^{\text{L}} ,\;D_{\text{Mg}}^{\text{L}} \)) |
Fig. 3 Concentration profiles along the lines L1 and L2 indicated in Fig. 2a, b after solidification time of 0.15, 0.3, 0.45, 0.6 s. L1 for Cu concentration and L2 for Mg concentration
Fig. 4 The solid fraction evolution of primary phase with the temperature for Al-4 wt%Cu-1 wt%Mg alloy calculated by Lever rule, Scheil model as well as the present model with different heat extraction rates
Fig. 5 Simulated dendrite morphologies and the solute fields of Cu a, c, Mg b, d for Al-4 wt%Cu-1 wt%Mg alloy with a heat extraction rate H = 52 MW/m3: a, b \( D_{\text{Mg}}^{\text{S}} \) = 0, \( D_{\text{Cu}}^{\text{S}} \) = 0, c, d \( D_{\text{Mg}}^{\text{S}} \ne \) 0, \( D_{\text{Cu}}^{\text{S}} \ne \) 0. The red color region in the images represents the eutectic region
Fig. 6 Simulated average concentration of Mg in the solid as a function of solid fraction under different cooling conditions. N in the figure represents no solid diffusion taking into consideration while Y represents with solid diffusion
Fig. 7 Magnification of the region indicated by the dashed line in Fig. 6d: a, b, c, d illustrates the dendrite morphologies and concentration fields of Mg at solidification time of 2.5, 3.2, 5.5, 6.1 s, respectively
Fig. 8 Illustration of the differences of solute enrichment of Cu a, Mg b elements in the interdendritic regions as a function of solidification time. Positions of P1, P2, P3 points are indicated in Fig. 7d
[1] | L. Wei, X. Lin, M. Wang, W.D. Huang, Phys. B 407, 2471 (2012) |
[2] | M. Asle Zaeem, H. Yin, S.D. Felicelli,Appl. Math. Model. 37, 3495(2013) |
[3] | U. Hecht, L. Granasy, T. Pusztai, Mater. Sci. Eng. R 46, 1 (2004) |
[4] | W. Tan, N.S. Bailey, Y.C. Shin,Comput. Mater. Sci. 50, 2573(2011) |
[5] | A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler,Comput. Mater. Sci. 55, 263(2012) |
[6] | A. Jacot, M. Rappaz, Acta Mater. 20, 1909 (2002) |
[7] | Q. Du, A. Jacot,Acta Mater. 53, 3479(2005) |
[8] | M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, Y.A. Chang, J. Phase Equilib. Diffus. 28, 130(2007) |
[9] | T. Dai, M.F. Zhu, S.L. Chen, W.S. Cao, C.P. Hong,Acta Metall. Sin. 44, 1175(2008). (in Chinese) |
[10] | S.C. Michelic, J.M. Thuswaldner, C. Bernhard,Acta Mater. 58, 2738(2010) |
[11] | W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328 (2009) |
[12] | R.J. Zhang, T. Jing, W.Q. Jie, B.C. Liu,Scr. Mater. 48, 689(2003) |
[13] | M.F. Zhu, D.M. Stefanescu,Acta Mater. 55, 1741(2007) |
[14] | L. Nastac,Acta Mater. 47, 4253(1999) |
[15] | L.B. Sanches, D.M. Stefanescu, Metall. Mater. Trans. A 34, 367 (2003) |
[16] | M. Asle Zaeem, H. Yin, S.D. Felicelli, J. Mater. Sci. Technol. 28, 137(2012) |
[17] | L.B. Sanches, D.M. Stefanescu, Metall. Mater. Trans. A 35, 2471 (2004) |
[18] | F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, Y.A. Chang,Acta Mater. 47, 489(1999) |
[19] | Q. Du, D.G. Eskin, A. Jacot, L. Katgerman,Acta Mater. 55, 1523(2007) |
[20] | J.J. Li, J.C. Wang, G.C. Yang, Chin. Phys. B 17, 3516 (2008) |
[21] | T. Kraft, Y.A. Chang, Metall. Mater. Trans. A 29, 2447 (1998) |
[1] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[2] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[3] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[4] | Gang Shen, Cheng-Wu Zheng, Jian-Feng Gu, Dian-Zhong Li. Micro-scale Cellular Automaton Modeling of Interface Evolution During Reaustenitization from Pearlite Structure in Steels [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 713-722. |
[5] | Chi Zhang,Li-Wen Zhang,Wen-Fei Shen,Ying-Nan Xia,Yu-Tan Yan. 3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 79-88. |
[6] | Tan He,Rui Hu,Tie-Bang Zhang,Jin-Shan Li. Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti-48Al-xNb Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 714-721. |
[7] | Xuan Ma,Cheng-Wu Zheng,Xing-Guo Zhang,Dian-Zhong Li. Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(12): 1127-1135. |
[8] | M. Manikandan, N. Arivazhagan, M. Nageswara Rao, G. Madhusudhan Reddy. Improvement of Microstructure and Mechanical Behavior of Gas Tungsten Arc Weldments of Alloy C-276 by Current Pulsing [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 208-215. |
[9] | Tan He, Rui Hu, Jun Wang, Jie-Ren Yang, Jin-Shan Li. Effects of β-Dendrite Growth Velocity on β → α Transformation of Hypoperitectic Ti-46Al-7Nb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 58-63. |
[10] | Shaojun Liu, Guangyu Yang, Wanqi Jie. Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg-3.0Nd-1.5Gd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1134-1143. |
[11] | M. S. Abdel Rahman, N. A. Abdel Raheem, M. R. El Koussy. Effect of Heat Input on the Microstructure and Properties of Dissimilar Weld Joint Between Incoloy 28 and Superaustenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 259-266. |
[12] | Chuan WU, He YANG, Hongwei LI. Substructure Evolution of Ti-6Al-2Zr-1Mo-1V Alloy Isothermally Hot Compressed in α+β Two-Phase Region [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 533-544. |
[13] | Mengwu WU, Shoumei XIONG. A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(3): 169-178. |
[14] | Baojun YU, Xiaojun GUAN,Lijun WANG, Qingkai ZENG, Qianqian LIU, Yu CAO. Mesoscale simulation of discontinuous dynamic recrystallization using the cellular automaton method [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(4): 287-294. |
[15] | Yutian DING, Xunfeng YUAN, Tingbiao GUO, Yong HU. Phase field simulation of dendrite growth under convection [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(2): 121-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||