Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (7): 713-722.DOI: 10.1007/s40195-018-0706-8
• Orginal Article • Previous Articles Next Articles
Gang Shen1, Cheng-Wu Zheng2(), Jian-Feng Gu1,3,4(
), Dian-Zhong Li2
Received:
2017-09-01
Revised:
2017-11-09
Online:
2018-07-10
Published:
2018-06-06
Gang Shen, Cheng-Wu Zheng, Jian-Feng Gu, Dian-Zhong Li. Micro-scale Cellular Automaton Modeling of Interface Evolution During Reaustenitization from Pearlite Structure in Steels[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 713-722.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic representation of microstructure during dissolution of pearlite into austenite a and variation of carbon content along the dashed line A-A′ b
Fig. 2 Schematic representation of linearized Fe-C phase diagram with Gibbs-Thomson effect and definition of concentrations imposed at interface for CA calculation
Symbol | Definition and unit | Value | Refs. |
---|---|---|---|
\({\text{A}}_{{{\text{c}}1}}\) | Austenite formation start temperature (K) | 996.0 | [ |
\({\text{A}}_{{{\text{c}}3}}\) | Ferrite dissolution finish temperature (K) | \(- \,0.004021 \cdot T + 4.7651\) | [ |
\(A_{\text{ccm}}\) | Cementite dissolution finish temperature (K) | \(0.003255 \cdot T - 2.4817\) | [ |
\(M^{\alpha \gamma }\) | Mobility of \(\alpha /\gamma\) interface (mol m J-1 s-1) | \(0.5 \cdot { \exp }\left( { - \,140000/\left( {RT} \right)} \right)\) | [ |
\(M^{\gamma \theta }\) | Mobility of \({\gamma \mathord{\left/ {\vphantom {\gamma \theta }} \right. \kern-0pt} \theta }\) interface (mol m J-1 s-1) | \(0.05 \cdot { \exp }\left( { - \,140000/\left( {RT} \right)} \right)\) | - |
\(D_{\text{c}}^{\gamma }\) | Carbon diffusion coefficient in austenite (m2 s-1) | \(1.5 \times 10^{ - 5} { \exp }\left( { - \,142000/\left( {RT} \right)} \right)\). | [ |
\(\varGamma_{\gamma /\alpha }\) | Gibbs-Thomson coefficient of \({\alpha \mathord{\left/ {\vphantom {\alpha \gamma }} \right. \kern-0pt} \gamma }\) interface (K m) | \(2 \times 10^{ - 7}\) | [ |
\(\varGamma_{\gamma /\theta }\) | Gibbs-Thomson coefficient of \({\gamma \mathord{\left/ {\vphantom {\gamma \theta }} \right. \kern-0pt} \theta }\) interface (K m) | \(2 \times 10^{ - 7}\) | [ |
Table 1 Key parameters used in simulations
Symbol | Definition and unit | Value | Refs. |
---|---|---|---|
\({\text{A}}_{{{\text{c}}1}}\) | Austenite formation start temperature (K) | 996.0 | [ |
\({\text{A}}_{{{\text{c}}3}}\) | Ferrite dissolution finish temperature (K) | \(- \,0.004021 \cdot T + 4.7651\) | [ |
\(A_{\text{ccm}}\) | Cementite dissolution finish temperature (K) | \(0.003255 \cdot T - 2.4817\) | [ |
\(M^{\alpha \gamma }\) | Mobility of \(\alpha /\gamma\) interface (mol m J-1 s-1) | \(0.5 \cdot { \exp }\left( { - \,140000/\left( {RT} \right)} \right)\) | [ |
\(M^{\gamma \theta }\) | Mobility of \({\gamma \mathord{\left/ {\vphantom {\gamma \theta }} \right. \kern-0pt} \theta }\) interface (mol m J-1 s-1) | \(0.05 \cdot { \exp }\left( { - \,140000/\left( {RT} \right)} \right)\) | - |
\(D_{\text{c}}^{\gamma }\) | Carbon diffusion coefficient in austenite (m2 s-1) | \(1.5 \times 10^{ - 5} { \exp }\left( { - \,142000/\left( {RT} \right)} \right)\). | [ |
\(\varGamma_{\gamma /\alpha }\) | Gibbs-Thomson coefficient of \({\alpha \mathord{\left/ {\vphantom {\alpha \gamma }} \right. \kern-0pt} \gamma }\) interface (K m) | \(2 \times 10^{ - 7}\) | [ |
\(\varGamma_{\gamma /\theta }\) | Gibbs-Thomson coefficient of \({\gamma \mathord{\left/ {\vphantom {\gamma \theta }} \right. \kern-0pt} \theta }\) interface (K m) | \(2 \times 10^{ - 7}\) | [ |
Fig. 3 Schematic representation of sidewise planar growth of austenite into ferrite and cementite (rγ/α and rγ/θ are positions of the moving austenite fronts into ferrite and cementite, respectively)
Fig. 7 Austenite growing inside pearlite lamella with interlamellar spacing of 0.5 μm at 1073 K: a evolution of phase interface; b carbon concentration field at steady-state stage
Fig. 9 Change in local velocities of the \({\gamma \mathord{\left/ {\vphantom {\gamma \alpha }} \right. \kern-0pt} \alpha }\) interface (\(v_{y}^{\gamma /\alpha }\)) at different positions of B, C and D (as shown in Fig. 7) of moving austenite interface
Fig. 10 Interface shapes of growing austenite and carbon concentration profiles at steady state with varied carbon diffusion coefficient: a 2.0 \(D_{\text{C}}^{\gamma }\); b \(D_{\text{C}}^{\gamma }\); c 0.5 \(D_{\text{C}}^{\gamma }\)
Fig. 12 Interface shapes and carbon concentration profile of growing austenite at steady state with varied interlamellar spacings of 0.2 μm a, 0.4 μm b and 0.8 μm c
Fig. 13 Growth rate (\(v\)) and parabolic coefficient of interface shapes at steady state during austenite formation from pearlite with various interlamellar spacings
|
[1] | Chi Zhang,Li-Wen Zhang,Wen-Fei Shen,Ying-Nan Xia,Yu-Tan Yan. 3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 79-88. |
[2] | Xuan Ma,Cheng-Wu Zheng,Xing-Guo Zhang,Dian-Zhong Li. Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(12): 1127-1135. |
[3] | Rui Chen, Qing-Yan Xu, Bai-Cheng Liu. Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 173-181. |
[4] | Genlian Fan, Ziyun Yu, Zhanqiu Tan, Zhiqiang Li, Di Zhang. Evolution, Control, and Effects of Interface in CNT/Al Composites: a Review [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 839-843. |
[5] | Chuan WU, He YANG, Hongwei LI. Substructure Evolution of Ti-6Al-2Zr-1Mo-1V Alloy Isothermally Hot Compressed in α+β Two-Phase Region [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 533-544. |
[6] | Mengwu WU, Shoumei XIONG. A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(3): 169-178. |
[7] | Baojun YU, Xiaojun GUAN,Lijun WANG, Qingkai ZENG, Qianqian LIU, Yu CAO. Mesoscale simulation of discontinuous dynamic recrystallization using the cellular automaton method [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(4): 287-294. |
[8] | J.W. Zhao, H. Ding, W.J.Zhao, F.R. Cao, H.L. Hou, Z.Q. Li. MODELING OF DYNAMIC RECRYSTALLIZATION OF Ti6Al4V ALLOY USING A CELLULAR AUTOMATON APPROACH [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(4): 260-268 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||