Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (6): 1134-1143.DOI: 10.1007/s40195-014-0151-2
• Orginal Article • Previous Articles Next Articles
Liu Shaojun, Yang Guangyu(), Jie Wanqi
Received:
2014-04-03
Revised:
2014-06-14
Online:
2014-10-11
Published:
2015-07-23
Liu Shaojun, Yang Guangyu, Jie Wanqi. Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg-3.0Nd-1.5Gd Alloy[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1134-1143.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 OM microstructures of the directionally solidified Mg-2.49Nd-1.82Gd alloy under the temperature gradient of 40 K/mm at the growth rates of 10 μm/s a, b, 40 μm/s c, d, and 100 μm/s e, f, respectively (a, c, e longitudinal sections; b, d, f transverse sections)
Fig. 5 Variation of the primary dendrite arm spacing λ 1 a and the secondary dendrite arm spacing λ 2 b with the cooling rate R for Mg-2.49Nd-1.82Gd alloy under G = 40 K/mm
Fig. 7 SEM microstructures of transversal section and phase identification results of directional solidified Mg-2.49Nd-1.82Gd alloys under constant temperature gradient 40 K/mm at different growth rates: a, b 10 μm/s; c, d 40 μm/s; e, f 100 μm/s
Fig. 8 Transversal section TEM microstructures and SAED patterns of directional solidified Mg-2.49Nd-1.82Gd alloys under constant temperature gradient 40 K/mm at the growth rate 40 μm/s: a TEM-BF image, b SAED of the phase A, c TEM-BF image, d SAED of the phase B, e local enlarger of SAED boxed by dash line in d
Fig. 9 EPMA backscatter images and Mg, Nd, and Gd element distribution maps of Mg-2.49Nd-1.82Gd alloy after directional solidification under the growth rate of 10 and 100 μm/s at G = 40 K/mm
Fig. 11 The nominal stress-nominal strain curves for the directionally solidified and non-directionally solidified experimental alloy under the same cooling rate of 1.6 K/s
Fig. 12 Mechanical properties of the as-cast experimental alloy under the temperature gradient of 40 K/mm at the growth rate of 10, 40, and 100 μm/s, respectively
[1] | H.Z. Fu, J.J. Guo, L. Liu, J.S. Li, Directional Solidification and Processing of Advanced Materials (Science Press, Beijing, 2008), p. 237 |
[2] | C. Zhang, D. Ma, K.S. Wu, H.B. Cao, G.P. Cao, S. Kou, Y.A. Chang, X.Y. Yan, Intermetallics 15, 1395 (2007) |
[3] | X.W. Zheng, A.A. Luo, C. Zhang, J. Dong, R.A. Waldo, Metall. Mater.Trans.A 43, 3239 (2012) |
[4] | D. Mirkovic, R. Schmid-Fetzer, Metall. Mater.Trans.A 40, 958 (2009) |
[5] | J.L. Li, R.S. Chen, Y.Q. Ma, W. Ke, Acta Metall. Sin. (Engl. Lett.) 26, 728(2013) |
[6] | Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metall. Sin. (Engl. Lett.) 21, 313(2008) |
[7] | F. Czerwinski,Magnesium Alloys—Design, Processing and Properties (InTech, Rijeka, 2011), p. 13 |
[8] | Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya, J. Jpn.Inst.Light Met. 45, 57(1995) |
[9] | A. Bell, V. Srivastava, G.W. Greenwood, H. Jones, Z. Metall. 95, 369(2004) |
[10] | J.H. Li,Rare Met Mater. Eng. 39(1), 101(2010) (in Chinese) |
[11] | J.D. Hunt,Solidification and Casting of Metals (The Metal Society, London, 1979), p. 3 |
[12] | W. Kurz, D.J. Fisher,Acta Metall. 29, 11(1981) |
[13] | T.Z. Kattamis, M.C. Flemings,Trans. TMS-AIME 233, 992 (1965) |
[14] | J.D. Hunt, S.Z. Lu, Metall.Trans. A 27, 611 (1996) |
[15] | Q.M. Peng, J.L. Wang, Y.M. Wu, L.M. Wang, 433, 133 (2006) |
[16] | J.H. Li, G. Sha, T.Y. Wang, W.Q. Jie, S.P. Ringer, Mater. Sci.Eng.A 534, 1 (2012) |
[17] | S.C. Michelic, J.M. Thuswaldner, C. Bernhard,Acta Mater. 58, 2738(2010) |
[18] | R.T. Jessica, D.S. Nicholas, J.W. Jones, T.M. Pollck, Metall. Mater.Trans.A 41, 2435 (2010) |
[19] | J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002) |
[20] | J.H. He, X.Y. Tang, N.P. Chen, Acta Metall. Sin. (Engl. Lett.), 4, 21(1991) |
[1] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[2] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[3] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[4] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[5] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[6] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[7] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[8] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[9] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[10] | Juan Liu, Yuze Wu, Lin Wang, Hui Wang, Charlie Kong, Alexander Pesin, Alexander P. Zhilyaev, Hailiang Yu. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 871-880. |
[11] | Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 751-758. |
[12] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[13] | Jinwei Yin, Peilong Zhou, Hanqin Liang, Dongxu Yao, Yongfeng Xia, Kaihui Zuo, YuPing Zeng. Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1609-1617. |
[14] | Hao-Yu Yi, Tian Liang, Min Wang, Xiang-Dong Zha, Ying-Che Ma, Kui Liu. Effects of Silicon on the Microstructure and Mechanical Properties of 15-15Ti Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1583-1590. |
[15] | Wen Wang, Peng Han, Jie Yuan, Pai Peng, Qiang Liu, Fei Qiang, Ke Qiao, Kuai-She Wang. Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 147-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||