Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (6): 995-1007.DOI: 10.1007/s40195-014-0113-8
• Orginal Article • Previous Articles Next Articles
P.M.Ajith1, P.Sathiya1(), S.Aravindan2
Received:
2014-07-26
Revised:
2014-07-26
Online:
2014-07-26
Published:
2015-07-23
P.M.Ajith, P.Sathiya, S.Aravindan. Experimental Investigation on Friction Welding of UNS S32205 Duplex Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 995-1007.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | P | S | Cr | Mo | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|---|
0.021 | 0.357 | 1.61 | 0.026 | 0.001 | 22.50 | 3.38 | 4.79 | 0.193 | Rest |
Table 1 Base material chemical composition (wt%)
C | Si | Mn | P | S | Cr | Mo | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|---|
0.021 | 0.357 | 1.61 | 0.026 | 0.001 | 22.50 | 3.38 | 4.79 | 0.193 | Rest |
Exp. No. | HP (MPa) | UP (MPa) | HT (s) | UT (s) | SoR (r/min) |
---|---|---|---|---|---|
1 | 70 | 145 | 6 | 3 | 1,500 |
2 | 70 | 155 | 7 | 4 | 2,000 |
3 | 70 | 165 | 8 | 5 | 2,500 |
4 | 70 | 175 | 9 | 6 | 3,000 |
5 | 80 | 145 | 7 | 5 | 3,000 |
6 | 80 | 155 | 6 | 6 | 2,500 |
7 | 80 | 165 | 9 | 3 | 2,000 |
8 | 80 | 175 | 8 | 4 | 1,500 |
9 | 90 | 145 | 8 | 6 | 2,000 |
10 | 90 | 155 | 9 | 5 | 1,500 |
11 | 90 | 165 | 6 | 4 | 3,000 |
12 | 90 | 175 | 7 | 3 | 2,500 |
13 | 100 | 145 | 9 | 4 | 2,500 |
14 | 100 | 155 | 8 | 3 | 3,000 |
15 | 100 | 165 | 7 | 6 | 1,500 |
16 | 100 | 175 | 6 | 5 | 2,000 |
Table 2 List of friction welding parameters used in the preparation of weldment
Exp. No. | HP (MPa) | UP (MPa) | HT (s) | UT (s) | SoR (r/min) |
---|---|---|---|---|---|
1 | 70 | 145 | 6 | 3 | 1,500 |
2 | 70 | 155 | 7 | 4 | 2,000 |
3 | 70 | 165 | 8 | 5 | 2,500 |
4 | 70 | 175 | 9 | 6 | 3,000 |
5 | 80 | 145 | 7 | 5 | 3,000 |
6 | 80 | 155 | 6 | 6 | 2,500 |
7 | 80 | 165 | 9 | 3 | 2,000 |
8 | 80 | 175 | 8 | 4 | 1,500 |
9 | 90 | 145 | 8 | 6 | 2,000 |
10 | 90 | 155 | 9 | 5 | 1,500 |
11 | 90 | 165 | 6 | 4 | 3,000 |
12 | 90 | 175 | 7 | 3 | 2,500 |
13 | 100 | 145 | 9 | 4 | 2,500 |
14 | 100 | 155 | 8 | 3 | 3,000 |
15 | 100 | 165 | 7 | 6 | 1,500 |
16 | 100 | 175 | 6 | 5 | 2,000 |
Fig. 1 Macrographs of the friction weld joints: a Exp. No. 1, b Exp. No. 2, c Exp. No. 3, d Exp. No. 4, e Exp. No. 5, f Exp. No. 6, g Exp. No. 7, h Exp. No. 8, i Exp. No. 9, j Exp. No. 10, k Exp. No. 11, l Exp. No. 12, m Exp. No. 13, n Exp. No. 14, o Exp. No. 15, p Exp. No. 16
Exp. No. | Ferrite number | Predicted ferrite number in the weld metal | ||
---|---|---|---|---|
WM | PDZ | Base metal | ||
1 | 53.34 | 47.18 | 51.98 | 48 |
2 | 54.5 | 46.52 | 50.04 | 46 |
3 | 51.88 | 45.14 | 48.26 | 47 |
4 | 53.62 | 45.28 | 43.66 | 46 |
5 | 55.76 | 45.32 | 47.78 | 45 |
6 | 52.9 | 46.8 | 50.7 | 48 |
7 | 52.3 | 43.8 | 48.1 | 47 |
8 | 55.02 | 44.5 | 44.78 | 46 |
9 | 51.86 | 44.46 | 47.7 | 46 |
10 | 55.96 | 44.3 | 47.62 | 47 |
11 | 52.1 | 46.6 | 49.1 | 45 |
12 | 52.0 | 45.38 | 46.34 | 46 |
13 | 52.78 | 41.28 | 44.16 | 46 |
14 | 55.0 | 45.06 | 45.1 | 45 |
15 | 54.68 | 45.68 | 48.46 | 47 |
16 | 53.46 | 46.24 | 45.8 | 46 |
Table 3 Measured and predicted ferrite number friction weld zones
Exp. No. | Ferrite number | Predicted ferrite number in the weld metal | ||
---|---|---|---|---|
WM | PDZ | Base metal | ||
1 | 53.34 | 47.18 | 51.98 | 48 |
2 | 54.5 | 46.52 | 50.04 | 46 |
3 | 51.88 | 45.14 | 48.26 | 47 |
4 | 53.62 | 45.28 | 43.66 | 46 |
5 | 55.76 | 45.32 | 47.78 | 45 |
6 | 52.9 | 46.8 | 50.7 | 48 |
7 | 52.3 | 43.8 | 48.1 | 47 |
8 | 55.02 | 44.5 | 44.78 | 46 |
9 | 51.86 | 44.46 | 47.7 | 46 |
10 | 55.96 | 44.3 | 47.62 | 47 |
11 | 52.1 | 46.6 | 49.1 | 45 |
12 | 52.0 | 45.38 | 46.34 | 46 |
13 | 52.78 | 41.28 | 44.16 | 46 |
14 | 55.0 | 45.06 | 45.1 | 45 |
15 | 54.68 | 45.68 | 48.46 | 47 |
16 | 53.46 | 46.24 | 45.8 | 46 |
Exp. No. | Cr | Mo | Si | Ni | C | N | Mn | Creq | Nieq | Creq/Nieq |
---|---|---|---|---|---|---|---|---|---|---|
1 | 22.60 | 3.31 | 0.38 | 5.02 | 0.012 | 0.142 | 1.54 | 22.814 | 12.092 | 1.88 |
2 | 22.91 | 3.42 | 0.37 | 4.98 | 0.023 | 0.173 | 1.63 | 23.263 | 13.233 | 1.76 |
3 | 22.16 | 3.27 | 0.42 | 5.12 | 0.019 | 0.145 | 1.73 | 22.378 | 12.575 | 1.78 |
4 | 22.38 | 3.41 | 0.48 | 4.83 | 0.024 | 0.153 | 1.69 | 22.884 | 12.623 | 1.81 |
5 | 22.54 | 3.29 | 0.39 | 5.10 | 0.018 | 0.162 | 1.85 | 22.741 | 13.027 | 1.74 |
6 | 22.61 | 3.17 | 0.41 | 5.09 | 0.021 | 0.155 | 1.73 | 22.673 | 12.865 | 1.76 |
7 | 22.76 | 3.28 | 0.44 | 4.89 | 0.025 | 0.149 | 1.51 | 23.022 | 12.519 | 1.84 |
8 | 22.09 | 3.46 | 0.47 | 5.01 | 0.027 | 0.163 | 1.49 | 22.649 | 13.053 | 1.73 |
9 | 22.81 | 3.39 | 0.39 | 5.07 | 0.019 | 0.168 | 1.53 | 23.151 | 13.023 | 1.78 |
10 | 22.85 | 3.26 | 0.31 | 4.92 | 0.025 | 0.149 | 1.60 | 22.889 | 12.594 | 1.82 |
11 | 22.91 | 3.20 | 0.43 | 4.87 | 0.023 | 0.171 | 1.67 | 23.045 | 13.091 | 1.76 |
12 | 22.11 | 3.38 | 0.44 | 5.05 | 0.028 | 0.153 | 1.59 | 22.512 | 12.913 | 1.74 |
13 | 22.73 | 3.39 | 0.47 | 5.11 | 0.022 | 0.156 | 1.43 | 23.191 | 12.791 | 1.81 |
14 | 22.39 | 3.18 | 0.34 | 4.92 | 0.019 | 0.171 | 1.72 | 22.362 | 13.046 | 1.71 |
15 | 22.43 | 3.40 | 0.36 | 4.79 | 0.024 | 0.162 | 1.63 | 22.74 | 12.787 | 1.78 |
16 | 22.75 | 3.29 | 0.41 | 4.86 | 0.021 | 0.166 | 1.58 | 22.72 | 12.78 | 1.77 |
Base metal | 22.43 | 3.38 | 0.35 | 4.77 | 0.025 | 0.193 | 1.61 | 22.69 | 13.59 | 1.66 |
Table 4 Chemical composition (wt%) of weld metal and Creq/Nieq ratios
Exp. No. | Cr | Mo | Si | Ni | C | N | Mn | Creq | Nieq | Creq/Nieq |
---|---|---|---|---|---|---|---|---|---|---|
1 | 22.60 | 3.31 | 0.38 | 5.02 | 0.012 | 0.142 | 1.54 | 22.814 | 12.092 | 1.88 |
2 | 22.91 | 3.42 | 0.37 | 4.98 | 0.023 | 0.173 | 1.63 | 23.263 | 13.233 | 1.76 |
3 | 22.16 | 3.27 | 0.42 | 5.12 | 0.019 | 0.145 | 1.73 | 22.378 | 12.575 | 1.78 |
4 | 22.38 | 3.41 | 0.48 | 4.83 | 0.024 | 0.153 | 1.69 | 22.884 | 12.623 | 1.81 |
5 | 22.54 | 3.29 | 0.39 | 5.10 | 0.018 | 0.162 | 1.85 | 22.741 | 13.027 | 1.74 |
6 | 22.61 | 3.17 | 0.41 | 5.09 | 0.021 | 0.155 | 1.73 | 22.673 | 12.865 | 1.76 |
7 | 22.76 | 3.28 | 0.44 | 4.89 | 0.025 | 0.149 | 1.51 | 23.022 | 12.519 | 1.84 |
8 | 22.09 | 3.46 | 0.47 | 5.01 | 0.027 | 0.163 | 1.49 | 22.649 | 13.053 | 1.73 |
9 | 22.81 | 3.39 | 0.39 | 5.07 | 0.019 | 0.168 | 1.53 | 23.151 | 13.023 | 1.78 |
10 | 22.85 | 3.26 | 0.31 | 4.92 | 0.025 | 0.149 | 1.60 | 22.889 | 12.594 | 1.82 |
11 | 22.91 | 3.20 | 0.43 | 4.87 | 0.023 | 0.171 | 1.67 | 23.045 | 13.091 | 1.76 |
12 | 22.11 | 3.38 | 0.44 | 5.05 | 0.028 | 0.153 | 1.59 | 22.512 | 12.913 | 1.74 |
13 | 22.73 | 3.39 | 0.47 | 5.11 | 0.022 | 0.156 | 1.43 | 23.191 | 12.791 | 1.81 |
14 | 22.39 | 3.18 | 0.34 | 4.92 | 0.019 | 0.171 | 1.72 | 22.362 | 13.046 | 1.71 |
15 | 22.43 | 3.40 | 0.36 | 4.79 | 0.024 | 0.162 | 1.63 | 22.74 | 12.787 | 1.78 |
16 | 22.75 | 3.29 | 0.41 | 4.86 | 0.021 | 0.166 | 1.58 | 22.72 | 12.78 | 1.77 |
Base metal | 22.43 | 3.38 | 0.35 | 4.77 | 0.025 | 0.193 | 1.61 | 22.69 | 13.59 | 1.66 |
Fig. 4 PDZ and weld zone microstructures: a Exp. No. 1 PDZ, b Exp. No. 1 WM, c Exp. No. 2 PDZ, d Exp. No. 2 WM, e Exp. No. 5 PDZ, f Exp. No. 5 WM, g Exp. No. 7 PDZ, h Exp. No. 7 WM, i Exp. No. 10 PDZ, j Exp. No. 10 WM, k Exp. No. 12 PDZ, l Exp. No. 12 WM, m Exp. No. 13PDZ, n Exp. No. 13 WM, o Exp. No. 14 PDZ, p Exp. No. 14 WM, q Exp. No. 16 PDZ, r Exp. No. 16 WM
Exp. No. | WM | PDZ | Exp. No. | WM | PDZ |
---|---|---|---|---|---|
1 | 29.8 | 10.04 | 9 | 18.4 | 9.0 |
2 | 27.5 | 16.01 | 10 | 19.1 | 8.27 |
3 | 26.2 | 10.4 | 11 | 25.92 | 9.48 |
4 | 20.97 | 12.8 | 12 | 25.25 | 9.53 |
5 | 14.2 | 11.0 | 13 | 23.3 | 9.07 |
6 | 12.8 | 11.4 | 14 | 25.3 | 9.45 |
7 | 24.7 | 9.95 | 15 | 20.54 | 11.27 |
8 | 14.2 | 7.85 | 16 | 21.45 | 10.21 |
Average | 21.85 | 10.35 |
Table 5 Measured grain size values (µm)
Exp. No. | WM | PDZ | Exp. No. | WM | PDZ |
---|---|---|---|---|---|
1 | 29.8 | 10.04 | 9 | 18.4 | 9.0 |
2 | 27.5 | 16.01 | 10 | 19.1 | 8.27 |
3 | 26.2 | 10.4 | 11 | 25.92 | 9.48 |
4 | 20.97 | 12.8 | 12 | 25.25 | 9.53 |
5 | 14.2 | 11.0 | 13 | 23.3 | 9.07 |
6 | 12.8 | 11.4 | 14 | 25.3 | 9.45 |
7 | 24.7 | 9.95 | 15 | 20.54 | 11.27 |
8 | 14.2 | 7.85 | 16 | 21.45 | 10.21 |
Average | 21.85 | 10.35 |
Exp. No. | HP (MPa) | UP (MPa) | HT (s) | UT (s) | SoR (r/min) | Ultimate tensile strength (MPa) | Yield strength (MPa) | Elongation (%) | Fracture location |
---|---|---|---|---|---|---|---|---|---|
1 | 70 | 145 | 6 | 3 | 1,500 | 752 | 502 | 26.3 | Base |
2 | 70 | 155 | 7 | 4 | 2,000 | 766 | 508 | 27.2 | Base |
3 | 70 | 165 | 8 | 5 | 2,500 | 781 | 517 | 28.4 | Base |
4 | 70 | 175 | 9 | 6 | 3,000 | 805 | 516 | 31.1 | Base |
5 | 80 | 145 | 7 | 5 | 3,000 | 822 | 520 | 34.1 | Base |
6 | 80 | 155 | 6 | 6 | 2,500 | 758 | 508 | 26.7 | Base |
7 | 80 | 165 | 9 | 3 | 2,000 | 762 | 507 | 26.8 | Base |
8 | 80 | 175 | 8 | 4 | 1,500 | 785 | 516 | 29.2 | Base |
9 | 90 | 145 | 8 | 6 | 2,000 | 809 | 528 | 31.2 | Base |
10 | 90 | 155 | 9 | 5 | 1,500 | 828 | 538 | 34.8 | Base |
11 | 90 | 165 | 6 | 4 | 3,000 | 750 | 499 | 26.0 | Base |
12 | 90 | 175 | 7 | 3 | 2,500 | 788 | 516 | 29.8 | Base |
13 | 100 | 145 | 9 | 4 | 2,500 | 761 | 507 | 26.7 | Base |
14 | 100 | 155 | 8 | 3 | 3,000 | 740 | 498 | 26.2 | Base |
15 | 100 | 165 | 7 | 6 | 1,500 | 728 | 494 | 25.3 | Base |
16 | 100 | 175 | 6 | 5 | 2,000 | 720 | 490 | 24.8 | Base |
Base metal | 620 | 450 | 25 | - |
Table 6 Experimental results of tensile test
Exp. No. | HP (MPa) | UP (MPa) | HT (s) | UT (s) | SoR (r/min) | Ultimate tensile strength (MPa) | Yield strength (MPa) | Elongation (%) | Fracture location |
---|---|---|---|---|---|---|---|---|---|
1 | 70 | 145 | 6 | 3 | 1,500 | 752 | 502 | 26.3 | Base |
2 | 70 | 155 | 7 | 4 | 2,000 | 766 | 508 | 27.2 | Base |
3 | 70 | 165 | 8 | 5 | 2,500 | 781 | 517 | 28.4 | Base |
4 | 70 | 175 | 9 | 6 | 3,000 | 805 | 516 | 31.1 | Base |
5 | 80 | 145 | 7 | 5 | 3,000 | 822 | 520 | 34.1 | Base |
6 | 80 | 155 | 6 | 6 | 2,500 | 758 | 508 | 26.7 | Base |
7 | 80 | 165 | 9 | 3 | 2,000 | 762 | 507 | 26.8 | Base |
8 | 80 | 175 | 8 | 4 | 1,500 | 785 | 516 | 29.2 | Base |
9 | 90 | 145 | 8 | 6 | 2,000 | 809 | 528 | 31.2 | Base |
10 | 90 | 155 | 9 | 5 | 1,500 | 828 | 538 | 34.8 | Base |
11 | 90 | 165 | 6 | 4 | 3,000 | 750 | 499 | 26.0 | Base |
12 | 90 | 175 | 7 | 3 | 2,500 | 788 | 516 | 29.8 | Base |
13 | 100 | 145 | 9 | 4 | 2,500 | 761 | 507 | 26.7 | Base |
14 | 100 | 155 | 8 | 3 | 3,000 | 740 | 498 | 26.2 | Base |
15 | 100 | 165 | 7 | 6 | 1,500 | 728 | 494 | 25.3 | Base |
16 | 100 | 175 | 6 | 5 | 2,000 | 720 | 490 | 24.8 | Base |
Base metal | 620 | 450 | 25 | - |
Exp. No. | Impact strength (J) | ||||
---|---|---|---|---|---|
Room temperature | -50 °C | -100 °C | -150 °C | -196 °C | |
1 | 163 | 62 | 50 | 41 | 14 |
2 | 176 | 68 | 53 | 42 | 15 |
3 | 183 | 75 | 55 | 42 | 17 |
4 | 192 | 86 | 57 | 43 | 19 |
5 | 186 | 70 | 52 | 41 | 15 |
6 | 193 | 75 | 54 | 44 | 16 |
7 | 198 | 78 | 57 | 46 | 18 |
8 | 202 | 87 | 51 | 41 | 21 |
9 | 186 | 79 | 56 | 38 | 15 |
10 | 192 | 84 | 57 | 41 | 20 |
11 | 194 | 88 | 58 | 43 | 21 |
12 | 197 | 90 | 60 | 45 | 24 |
13 | 196 | 87 | 57 | 39 | 18 |
14 | 202 | 90 | 58 | 41 | 22 |
15 | 205 | 92 | 60 | 44 | 26 |
16 | 208 | 95 | 62 | 47 | 30 |
Base metal | 160 | 70 | 40 | 30 | 11 |
Table 7 Impact toughness of friction welds
Exp. No. | Impact strength (J) | ||||
---|---|---|---|---|---|
Room temperature | -50 °C | -100 °C | -150 °C | -196 °C | |
1 | 163 | 62 | 50 | 41 | 14 |
2 | 176 | 68 | 53 | 42 | 15 |
3 | 183 | 75 | 55 | 42 | 17 |
4 | 192 | 86 | 57 | 43 | 19 |
5 | 186 | 70 | 52 | 41 | 15 |
6 | 193 | 75 | 54 | 44 | 16 |
7 | 198 | 78 | 57 | 46 | 18 |
8 | 202 | 87 | 51 | 41 | 21 |
9 | 186 | 79 | 56 | 38 | 15 |
10 | 192 | 84 | 57 | 41 | 20 |
11 | 194 | 88 | 58 | 43 | 21 |
12 | 197 | 90 | 60 | 45 | 24 |
13 | 196 | 87 | 57 | 39 | 18 |
14 | 202 | 90 | 58 | 41 | 22 |
15 | 205 | 92 | 60 | 44 | 26 |
16 | 208 | 95 | 62 | 47 | 30 |
Base metal | 160 | 70 | 40 | 30 | 11 |
Fig. 9 Typical SEM fractured surfaces of the impact tested samples: a room temp. (Exp. No. 4), b -50 °C (Exp. No. 8), c -100 °C (Exp. No. 14), d -196 °C (Exp. No. 16)
Exp. No. | Corrosion current | Corrosion rate |
---|---|---|
I corr ×10-5 (mA/cm2) | (mm/y) | |
1 | 7.244 | 0.00078041 |
2 | 7.439 | 0.0008015 |
3 | 7.723 | 0.00089432 |
4 | 7.982 | 0.00091212 |
5 | 8.175 | 0.00092132 |
6 | 6.891 | 0.00053412 |
7 | 6.363 | 0.00049821 |
8 | 5.849 | 0.00039436 |
9 | 5.392 | 0.00039124 |
10 | 4.267 | 0.00048132 |
11 | 5.482 | 0.00039985 |
12 | 4.327 | 0.00048235 |
13 | 3.629 | 0.00041734 |
14 | 2.683 | 0.00029832 |
15 | 1.916 | 0.00021968 |
16 | 4.482 | 0.00038426 |
Base metal | 8.312 | 0.00093484 |
Table 8 Experimental results of corrosion test
Exp. No. | Corrosion current | Corrosion rate |
---|---|---|
I corr ×10-5 (mA/cm2) | (mm/y) | |
1 | 7.244 | 0.00078041 |
2 | 7.439 | 0.0008015 |
3 | 7.723 | 0.00089432 |
4 | 7.982 | 0.00091212 |
5 | 8.175 | 0.00092132 |
6 | 6.891 | 0.00053412 |
7 | 6.363 | 0.00049821 |
8 | 5.849 | 0.00039436 |
9 | 5.392 | 0.00039124 |
10 | 4.267 | 0.00048132 |
11 | 5.482 | 0.00039985 |
12 | 4.327 | 0.00048235 |
13 | 3.629 | 0.00041734 |
14 | 2.683 | 0.00029832 |
15 | 1.916 | 0.00021968 |
16 | 4.482 | 0.00038426 |
Base metal | 8.312 | 0.00093484 |
[1] | J. Charles, Weld.World (UK) 36, 43(1995) |
[2] | J.B. Vogt,Mater. Proc. Technol. 117, 364(2001) |
[3] | A. Mateo, L. Llanes, N. Akdut, M. Anglada,Mater. Sci. Eng.A 319-321, 516(2001) |
[4] | R.D. Kane,Adv. Mater. Proc. 144(1), 16(1993) |
[5] | B. Josefson, J.O. Nilsson, A. Wilson, Proc. Conf. Duplex Stainl. Steel 91, 67 (1991) |
[6] | C. Petterson, S. Fager,Welding Practice for the Sandvik Duplex Stainless Steels SAF2304, SAF2205 and SAF2507 (AB Sandvik Steel, S811 81 Sandviken, 1995), p. 81 |
[7] | J.O. Nilsson,Mater. Sci. Techbol. 8, 685(1992) |
[8] | T. Thorvaldsson, H. Eriksson, J. Kutka, A. Salwén, Influence of microstructure on mechanical properties of a duplex stainless steel. Stainless Steel ‘84, Göteborg, 1, 101(1984) |
[9] | R.N. Gunn, in fracture toughness due to intermetallic precipitates in duplex stainless steels. Duplex America 2000, Houston(2000), pp. 299-314 |
[10] | L. Karlsson, L. Bengtsson, U. Rolander, S. Pak,Applications of Stainless Steel ‘92, Stockholm, vol. 1(1992), pp. 335-344 |
[11] | S. Hertzman, B. Lehtinen, E. Symniotis-Barradal,Applications of Stainless Steel ‘92, Stockholm, vol.1 (1992), pp. 345-359 |
[12] | L. Karlsson, S. Rigdal, F. Lake, Effects of intermetallic phases in duplex stainless steel weldments. Duplex America 2000, Houston, (2000), pp. 257-272 |
[13] | L. Karlsson,Duplex stainless steel weld metals-effects of secondary phases. Duplex Stainless Steels’97, Maastricht, vol.1 (1997) pp. 43-58 |
[14] | M. Liljas, The welding metallurgy of duplex stainless steels. Duplex Stainless Steels ’94, Glasgow, 1994 |
Y.S. Sato, T.W. Nelson, C.J. Sterling, R.K. Steel, C.O. Pettersson, Mater. Sci.Eng. A 397, 376 (2005) | |
[16] | Z.M. Cvijović, D.V. Mihajlović, V.R. Knežević,Mater. Sci. Forum 282-283, 323(1998) |
[17] | H. Mumin Sachin, E. Akata, J. Mater. Process.Technol. 142, 239(2003) |
[18] | M. Sahin, J. Mater.Des. 28, 2244(2007) |
[19] | Duplex Stainless Steel, |
[20] | J.C. Lippold, I. Varol, V.A.Baeslack III, in Duplex Stainless Steels’91, ed. by J. Charles, S. Bernhardsson(Les Editions de Physique, Les Ulis, 1991), p. 383 |
[21] | J.C.Lippold, W. Lin, S. Brandi, I. Varol, W.A. Baeslack, in: Duplex Stainless Steels’94, Glasgow, 1994, ed. by T.G. Gooch, Paper 116 |
[22] | E.I. Kivineva, N.E. Hannerz, in: Duplex Stainless Steels’94, Glasgow, 1994, ed. by T.G. Gooch, Paper 7 |
[23] | P.A. Molian, J. Mater.Sci.Lett. 4, 281(1985) |
[24] | S. Heino, E.M. Knutson-Wedel, B. Karlsson, J. Mater. Sci. Technol. 15(1), 101(1999) |
[25] | N. Suutala, Metall. Mater.Trans.A 14, 191 (1983) |
[26] | O.H. Ibrahim, I.S. Ibrahim, T.A.F .Khalifa, Eng. Fail. Anal. 17, 1069(2010) |
[27] | W.J. Mills,Int. Met. Rev. 42(1997) |
[28] | J.W. Chan,Adv. Cryog. Eng. 55, 38(1992) |
[29] | G. Han, S. Fukuyama, K. Yokogawa,Mater. Sci. Technol. 15, 909(1999) |
[30] | R. Kacar, M. Acarer, Mater. Sci.Eng.A 363, 290 (2003) |
[31] | H. Sieurin, R. Sandstom,Eng. Fract. Mech. 73, 377(2006) |
[32] | Z. Sun, M. Kuo, I. Annergren, D. Pan, Mater. Sci.Eng.A 356, 274 (2003) |
[1] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[2] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[3] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[4] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[5] | Yongkui Li, Jianxin Lou, Hongtao Ju, Li Lin. Impact Toughness of Heat-Affected Zones of 11Cr Heat-Resistant Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 821-827. |
[6] | Yue Su, Shun-Cun Luo, Liang Meng, Piao Gao, Ze-Min Wang. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 774-788. |
[7] | Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 716-730. |
[8] | Xian-Kai Fan, Fu-Quan Li, Lei Liu, Hai-Chao Cui, Feng-Gui Lu, Xin-Hua Tang. Evolution of γ′ Particles in Ni-Based Superalloy Weld Joint and Its Effect on Impact Toughness During Long-Term Thermal Exposure [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 561-572. |
[9] | Jin Hyuk Choi, Gobinda Gyawali, Dhani Ram Dhakal, Bhupendra Joshi, Soo Wohn Lee. Electrodeposited Ni-W-TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 573-582. |
[10] | Wen-Chao Dong, Ming-Yue Wen, Hui-Yong Pang, Shan-Ping Lu. Effect of Post-weld Tempering on the Microstructure and Mechanical Properties in the Simulated HAZs of a High-Strength-High-Toughness Combination Marine Engineering Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 391-402. |
[11] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[12] | Hamid Mousalou, Sasan Yazdani, Naghi Parvini Ahmadi, Behzad Avishan. Nanostructured Carbide-Free Bainite Formation in Low Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1635-1644. |
[13] | Sami Bin Humam, Gobinda Gyawali, Dhani Ram Dhakal, Jin-Hyuk Choi, Soo Wohn Lee. Effect of Pulse and Direct Current Electrodeposition on Microstructure, Surface, and Scratch Resistance Properties of Ni-W Alloy and Ni-W-SiC Composite Coatings [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1321-1330. |
[14] | Yong-Han Li, Zhong-Hua Jiang, Zhen-Dan Yang, Jue-Shun Zhu. Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1346-1358. |
[15] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||