Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1436-1452.DOI: 10.1007/s40195-025-01871-9
					
													Haoran Pang1, Liwei Lu1( ), Gongji Yang1, Xiaojun Wang2,3, Wen Wang4(
), Gongji Yang1, Xiaojun Wang2,3, Wen Wang4( ), Hua Zhang5, Yujuan Wu6(
), Hua Zhang5, Yujuan Wu6( )
)
												  
						
						
						
					
				
Received:2024-11-11
															
							
																	Revised:2025-01-15
															
							
																	Accepted:2025-01-21
															
							
																	Online:2025-05-15
															
							
																	Published:2025-05-15
															
						Contact:
								Liwei Lu, Wen Wang, Yujuan Wu   
													Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452.
Add to citation manager EndNote|Ris|BibTeX
| Samples | UTS (MPa) | EL (%) | 
|---|---|---|
| Initial sample | 278.5 | 15.8 | 
| 1-cycle | 303 | 15.7 | 
| 2-cycle | 311 | 15 | 
| 3-cycle | 302 | 18.6 | 
| 4-cycle | 311.8 | 17.8 | 
| 5-cycle | 306 | 15.7 | 
| AC | 296.7 | 14 | 
Table 1 Data of tensile mechanical property of Mg-4.5Al-2.5Zn alloy at different states
| Samples | UTS (MPa) | EL (%) | 
|---|---|---|
| Initial sample | 278.5 | 15.8 | 
| 1-cycle | 303 | 15.7 | 
| 2-cycle | 311 | 15 | 
| 3-cycle | 302 | 18.6 | 
| 4-cycle | 311.8 | 17.8 | 
| 5-cycle | 306 | 15.7 | 
| AC | 296.7 | 14 | 
 
																													Fig. 3 Optical microstructures of the samples treated by various processes: a initial sample, b 1-cycle, c 2-cycle, d 3-cycle, e 4-cycle, f 5-cycle, g AC
 
																													Fig. 5 Typical grain G selected in Fig. 4a: a IPF map, b KAM map, c the corresponding KAM relative frequency and average KAM value, d (0001) pole figure, e inverse pole figures along the ND, f SF distribution map, g SF distribution map of S1, h SF distribution map of S2, i SF distribution map of S3
 
																													Fig. 6 DRX behavior in the typical region R1 selected in Fig. 4c: a DRX map, b misorientation angle accumulated along the arrow AB, c misorientation angle accumulated along the arrow CD, d (0001) pole figure, e inverse pole figures along the ND
 
																													Fig. 7 Characteristic regions R2 and R3 selected in Fig. 4e: a, c IPF map, b, d KAM map, e the corresponding KAM relative frequency and average KAM values, f, g (0001) pole figure, h, i SF distribution map; a, b, f, h R2, c, d, g, i R3
 
																													Fig. 10 Inverse pole figures and SF distribution of the major grains of PTC1, PTC2, PTC3 and PTC4 selected in Fig. 9a, d, g: a, b PTC1, c, d PTC2, e, f PTC3, g, h PTC4
| Slip system | PTC1 | PTC2 | PTC3 | PTC4 | 
|---|---|---|---|---|
| Basal slip | 0.08 | 0.08 | 0.13 | 0.23 | 
| Prismatic < a > slip | 0.47 | 0.47 | 0.24 | 0.45 | 
| Pyramidal < a > slip | 0.38 | 0.39 | 0.40 | 0.45 | 
| Pyramidal < c + a > slip | 0.44 | 0.44 | 0.42 | 0.40 | 
Table 2 Average SF values of PTC1, PTC2, PTC3 and PTC4
| Slip system | PTC1 | PTC2 | PTC3 | PTC4 | 
|---|---|---|---|---|
| Basal slip | 0.08 | 0.08 | 0.13 | 0.23 | 
| Prismatic < a > slip | 0.47 | 0.47 | 0.24 | 0.45 | 
| Pyramidal < a > slip | 0.38 | 0.39 | 0.40 | 0.45 | 
| Pyramidal < c + a > slip | 0.44 | 0.44 | 0.42 | 0.40 | 
| [1] | T. Wang, L. Yang, Z.F. Tang, L. Wu, H.Y. Yan, C. Liu, Y.Z. Ma, W.S. Liu, Z.J. Yu, Mater. Sci. Eng. A 844, 143042 (2022) | 
| [2] | K. Sheng, L.W. Lu, Y. Xiang, M. Ma, Z.Q. Wu, J. Magnes. Alloy. 7, 717 (2019) DOI | 
| [3] | X. Liu, D.D. He, B.W. Zhu, W.H. Liu, F. Ye, F.A. Wei, C.C. Xu, L.X. Li, Scr. Mater. 253, 116296 (2024) | 
| [4] | W. Kang, L.W. Lu, L.B. Feng, F.C. Lu, C.L. Gan, X.H. Li, J. Magnes. Alloy. 11, 317 (2023) | 
| [5] | D. Nugmanov, M. Knezevic, M. Zecevic, O. Sitdikov, M. Markushev, I.J. Beyerlein, Mater. Sci. Eng. A 713, 81 (2018) | 
| [6] | R. Ma, Y. Lu, L. Wang, Y.N. Wang, Trans. Nonferrous Met. Soc. China 28,902 (2018) | 
| [7] | J.R. Li, D.S. Xie, H.S. Yu, R.L. Liu, Y.Z. Shen, X.S. Zhang, C.L. Yang, L.F. Ma, H.C. Pan, G.W. Qin, J. Alloys Compd. 835, 155228 (2020) | 
| [8] | D.H. Cho, J.H. Nam, B.W. Lee, K.M. Cho, I.M. Park, J. Alloys Compd. 676, 461 (2016) | 
| [9] | Y.L. Xu, S. Gavras, F. Gensch, K.U. Kainer, N. Hort, JOM 72,517 (2020) | 
| [10] | D. Pei, W. Li, T.L. Yan, X.L. Li, X. Wang, J. Alloys Compd. 929, 167224 (2022) | 
| [11] | C.Q. Liu, H.W. Chen, C. He, Y.Y. Zhang, J.F. Nie, Mater. Charact. 113, 214 (2016) | 
| [12] | A. Utiarahman, A.F. Alkaim, A.M. Aljeboree, S.Z. Venediktovna, C.O. Takhirovna, M. Alexander, Y. Abilmazhinov, Y. Zhu, Mater. Today Commun. 26, 101843 (2021) | 
| [13] | H. Zheng, L. Zhu, S.S. Jiang, Y.G. Wang, F.G. Chen, J. Alloys Compd. 790, 529 (2019) | 
| [14] | J. Jin, X.L. Ji, S. Cao, W.W. Zhu, Metall. Mater. Trans. A 53, 3404 (2022) | 
| [15] | H.M. Zhai, Y. Du, X.Q. Li, W.S. Li, H.F. Wang, J. Mater. Sci. 56, 8276 (2021) | 
| [16] | H.B. Kim, E.W. Jeong, D.H. Ko, B.M. Kim, Y.R. Cho, Korean. J. Mater. Res. 23, 18 (2013) | 
| [17] | S. Hao, X.P. Guo, J.Y. Cui, P. Xue, R.Z. Xu, X.M. Guo, Mater. Sci. Eng. A 909, 146838 (2024) | 
| [18] | H. Mirzadeh, J. Mater. Res. Technol. 25, 7050 (2023) | 
| [19] | B. Che, L.W. Lu, J.L. Zhang, J.H. Zhang, M. Ma, L.F. Wang, F.G. Qi, Mater. Sci. Eng. A 832, 142475 (2022) | 
| [20] | Y. Liu, S. Shao, C.S. Xu, X.S. Zeng, X.J. Yang, Mater. Sci. Eng. A 588, 76 (2013) | 
| [21] | M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157, 53 (2018) | 
| [22] | K. Takagi, M. Yamasaki, Y. Mine, K. Takashima, Scr. Mater. 178, 498 (2020) | 
| [23] | Y.T. Fan, L.W. Lu, H.L. Zhao, Z.Q. Wu, Y. Xue, W. Wang, Acta Metall. Sin.-Engl. Lett. 36, 1649 (2023) | 
| [24] | H. Yu, H. Liu, B.A. Jiang, W. Yu, S.M. Kang, W.L. Cheng, S. Park, D. Chen, F.X. Yin, K. Shin, J.Y. Mu, X.W. Cui, J.H. Li, Metals 11,838 (2021) | 
| [25] | K. Zhang, J.H. Zheng, C. Hopper, J. Jiang, Mater. Sci. Eng. A 811, 141001 (2021) | 
| [26] | S.B. Zhou, T.T. Liu, A.T. Tang H. Shi, X.R. Jing, P. Peng, J.Y. Zhang, F.S. Pan, Trans. Nonferrous Met. Soc. China 34,504 (2024) | 
| [27] | N. Stanford, Mater. Sci. Eng. A 565, 469 (2013) | 
| [28] | H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Loge, K. Huang, Mater. Des. 193, 108873 (2020) | 
| [29] | J.L. Zhang, L.W. Lu, W. Kang, B. Che, M.H. Li, Y.T. Fan, M. Min, J. Plast. Eng. 29, 126 (2022) | 
| [30] | J.B. Jia, Y. Xu, Y. Yang, C. Chen, W.C. Liu, L.X. Hu, J.T. Luo, J. Alloys Compd. 721, 347 (2017) | 
| [31] | R. Sarvesha, W. Alam, A. Gokhale, T.S. Guruprasad, S. Bhagavath, S. Karagadde, J. Jain, S.S. Singh, Mater. Sci. Eng. A 759, 368 (2019) | 
| [32] | Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 410-411, 188 (2005) | 
| [33] | Q.H. Wang, B. Jiang, A.T. Tang, C. He, D.F. Zhang, J.F. Song, T.H. Yang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 746, 259 (2019) | 
| [34] | T.S. Zhou, Z.H. Liu, D.L. Yang, S.J. Meng, Z. Jia, D.X. Liu, J. Alloys Compd. 873, 159880 (2021) | 
| [35] | T.S. Zhou, B. Wang, M.J. Zhang, Y.Q. Li, S.W. Hu, X.Q. Li, D.X. Liu, Mater. Sci. Eng. A 899, 146469 (2024) | 
| [36] | H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, G.W. Qin, Acta Mater. 186, 278 (2020) | 
| [37] | X.J. Chen, W.C. Liu, G.H. Wu, H.R.J. Nodooshan, X.F. Zhang, S. Zhang, K.H. Zhou, W.J. Ding, J. Mater. Res. 31, 419 (2016) | 
| [38] | K. Bryła, M. Krystian, J. Horky, B. Mingle, K. Mroczka, P. Kurtyka, L. Litynska-Dobrzynska, Mater. Sci. Eng. A 737, 318 (2018) | 
| [39] | J.Y. Xiong, Z.Y. Chen, L. Yi, S.H. Hu, T. Chen, C.M. Liu, Mater. Sci. Eng. A 590, 60 (2014) | 
| [40] | F.M. Lu, A.B. Ma, J.H. Jiang, J. Chen, D. Song, Y.C. Yuan, J.Q. Chen, D.H. Yang, J. Alloys Compd. 643, 28 (2015) | 
| [41] | L.P. Zhong, Y.J. Wang, Y.C. Dou, J. Magnes. Alloy. 7, 637 (2019) | 
| [42] | M. Zha, X. Ma, H.L. Jia, Z.M. Hua, Z.X. Fan, Z.Z. Yang, Y.P. Gao, H.Y. Wang, Int. J. Plast. 167, 103682 (2023) | 
| [43] | F. Mokdad, D.L. Chen, D.Y. Li, J. Alloys Compd. 737, 549 (2018) | 
| [44] | L. Li, C. Zhang, H. Lv, C. Liu, Z. Wen, J. Jiang, J. Magnes. Alloy. 10, 249 (2022) | 
| [45] | S.C. Li, X. Zhao, X.D. Wang, X.M. Mu, F.F. Yan, J. Alloys Compd. 1005, 176102 (2024) | 
| [46] | L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, Mater. Charact. 170, 110697 (2020) | 
| [47] | S.C. Li, Z. Wang, X. Zhao, X.D. Wang, J.M. Yu, J. Mater. Res. Technol. 33, 384 (2024) | 
| [48] | X. Liu, Q.H. Wan, B.W. Zhu, W.H. Liu, L.X. Li, C.C. Xu, P.C. Guo, J. Mater. Sci. 59, 3662 (2024) | 
| [49] | V.M. Miller, T.M. Pollock, Metall. Mater. Trans. 47, 1854 (2016) | 
| [50] | Y.Y. He, G. Fang, J. Alloys Compd. 901, 163745 (2022) | 
| [51] | W. Qiu, S.L. Li, Z.Y. Lu, S.M. Zhang, J. Chen, W. Chen, L. Gan, W. Li, Y.J. Ren, J. Luo, M.H. Yao, W. Xie, Acta Metall. Sin.-Engl. Lett. 38, 287 (2025) | 
| [52] | G. Esteban-Manzanares, A.X. Ma, I. Papadimitriou, E. Martinez, J. Llorca, Model. Simul. Mater. Sc. 27, 075003 (2019) | 
| [53] | D.D. Zhang, M.Y. Chen, X.R. Zhang, K. Li, L.Q. Wang, Z.Y. Zhao, P.K. Bai, D.Q. Fang, Acta Metall. Sin.-Engl. Lett. 37, 1830 (2024) | 
| [54] | U.M. Chaudry, Y. Noh, K.A. Hamad, Mater. Res. Technol. 19, 3406 (2022) | 
| [55] | B. Che, L.W. Lu, J.L. Zhang, J. Teng, L. Chen, Y. Xu, T. Wang, L. Huang, Z.Q. Wu, J. Mater. Res. Technol. 19, 4557 (2022) | 
| [1] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. | 
| [2] | Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409. | 
| [3] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. | 
| [4] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. | 
| [5] | Wangjian Yu, Rui Hu, Guoqiang Shang, Xian Luo, Hong Wang. Correlation Mechanism Between Microstructure and Fatigue Crack Propagation Behavior of Ti-Mo-Cr-V-Nb-Al Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 981-1002. | 
| [6] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. | 
| [7] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. | 
| [8] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. | 
| [9] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. | 
| [10] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. | 
| [11] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. | 
| [12] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. | 
| [13] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. | 
| [14] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. | 
| [15] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			