Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1397-1409.DOI: 10.1007/s40195-025-01875-5
Previous Articles Next Articles
					
													Haoyu Cheng1, Chenyang Hou1, Jianlei Zhang1( ), Xiaodong Mao2(
), Xiaodong Mao2( ), Yuanxiang Zhang3, Yanyun Zhao4, Chulun Shen1, Changjiang Song1(
), Yuanxiang Zhang3, Yanyun Zhao4, Chulun Shen1, Changjiang Song1( )
)
												  
						
						
						
					
				
Received:2024-11-05
															
							
																	Revised:2025-01-09
															
							
																	Accepted:2025-02-21
															
							
																	Online:2025-05-13
															
							
																	Published:2025-05-13
															
						Contact:
								Jianlei Zhang, Xiaodong Mao, Changjiang Song   
													Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409.
Add to citation manager EndNote|Ris|BibTeX
| C | Si | Cr | Mo | Nb | V | Fe | 
|---|---|---|---|---|---|---|
| 0.1 | 0.3 | 9.25 | 0.95 | 0.087 | 0.22 | Bal. | 
Table 1 Chemical compositions of commercial P91 alloy steel (wt%)
| C | Si | Cr | Mo | Nb | V | Fe | 
|---|---|---|---|---|---|---|
| 0.1 | 0.3 | 9.25 | 0.95 | 0.087 | 0.22 | Bal. | 
 
																													Fig. 2 EPMA micrograph of the as-cast a and microstructure analysis of the hot-forged ODS steel: b EPMA micrograph, c XRD pattern, d EBSD orientation color map and e EPMA elemental distribution maps
 
																													Fig. 7 TEM images and TEM-EDS analysis of the as-forged ODS steel sample: a BF image of the martensite matrix, b further magnified image of the martensite matrix, c SAED pattern of the precipitates, d TEM-EDS analysis of the precipitates, e SAED pattern of the matrix
 
																													Fig. 8 TEM images and EDS results of the aged ODS steel sample at 750 °C for 3 h: a BF image of the martensite matrix, b further magnified image of the Cr-rich precipitates, c SAED pattern of the precipitates, d high-resolution image of nano-oxide precipitates, e FFT pattern of nano-oxide precipitates, f TEM-EDS analysis of the Cr-rich precipitates
 
																													Fig. 9 TEM images of the aged ODS steel sample at 750 °C for 25 h: a BF image of the matrix, b high-resolution image of nano-precipitates, c FFT pattern of nano-precipitates
| Samples | Size (nm) | Number density (m−3) | 
|---|---|---|
| 750 °C-3 h | 4.9 ± 1.2 | 4.81 × 1023 | 
| 750 °C-25 h | 6.2 ± 1.8 | 7.64 × 1023 | 
Table 2 Statistical analysis of nanoparticle size and number density in the aged ODS steel samples at 750 °C for 3 h and 25 h
| Samples | Size (nm) | Number density (m−3) | 
|---|---|---|
| 750 °C-3 h | 4.9 ± 1.2 | 4.81 × 1023 | 
| 750 °C-25 h | 6.2 ± 1.8 | 7.64 × 1023 | 
| Samples | Yield strength (MPa) | Tensile strength (MPa) | Total elongation (%) | 
|---|---|---|---|
| As-forged | 871 ± 8 | 1253 ± 13 | 5.0 ± 2.3 | 
| 750 °C-3 h | 529 ± 10 | 669 ± 7 | 11.0 ± 2.1 | 
| 750 °C-10 h | 493 ± 9 | 644 ± 12 | 13.5 ± 4.3 | 
| 750 °C-20 h | 496 ± 2 | 645 ± 2 | 21.9 ± 0.6 | 
| 750 °C-25 h | 506 ± 2 | 660 ± 5 | 23.3 ± 0.2 | 
Table 3 Tensile properties of the ODS steel under various conditions
| Samples | Yield strength (MPa) | Tensile strength (MPa) | Total elongation (%) | 
|---|---|---|---|
| As-forged | 871 ± 8 | 1253 ± 13 | 5.0 ± 2.3 | 
| 750 °C-3 h | 529 ± 10 | 669 ± 7 | 11.0 ± 2.1 | 
| 750 °C-10 h | 493 ± 9 | 644 ± 12 | 13.5 ± 4.3 | 
| 750 °C-20 h | 496 ± 2 | 645 ± 2 | 21.9 ± 0.6 | 
| 750 °C-25 h | 506 ± 2 | 660 ± 5 | 23.3 ± 0.2 | 
| Samples | C | Si | Nb | Mo | Cr | 
|---|---|---|---|---|---|
| Hot-forged | 0.10 | 0.29 | 0.08 | 0.91 | 9.10 | 
| 750 °C-3 h | 0.07 | 0.21 | 0.08 | 0.88 | 8.71 | 
| 750 °C-25 h | 0.06 | 0.19 | 0.07 | 0.80 | 8.60 | 
Table 4 Elemental content analysis (wt%) of the ODS steel samples
| Samples | C | Si | Nb | Mo | Cr | 
|---|---|---|---|---|---|
| Hot-forged | 0.10 | 0.29 | 0.08 | 0.91 | 9.10 | 
| 750 °C-3 h | 0.07 | 0.21 | 0.08 | 0.88 | 8.71 | 
| 750 °C-25 h | 0.06 | 0.19 | 0.07 | 0.80 | 8.60 | 
| Peaks | Samples | θ | β | βcosθ | 4sinθ | 
|---|---|---|---|---|---|
| (110) | Hot-forged | 22.260 | 0.345 | 0.320 | 1.515 | 
| 750 °C-3 h | 22.320 | 0.281 | 0.260 | 1.519 | |
| 750 °C-25 h | 22.280 | 0.286 | 0.265 | 1.517 | |
| (200) | Hot-forged | 32.340 | 0.903 | 0.763 | 2.140 | 
| 750 °C-3 h | 32.430 | 0.513 | 0.433 | 2.145 | |
| 750 °C-25 h | 32.400 | 0.560 | 0.473 | 2.143 | |
| (211) | Hot-forged | 41.010 | 0.789 | 0.595 | 2.625 | 
| 750 °C-3 h | 41.070 | 0.538 | 0.406 | 2.628 | |
| 750 °C-25 h | 41.020 | 0.576 | 0.435 | 2.625 | 
Table 5 Values of θ, β, βcosθ, and 4sinθ for samples in different states
| Peaks | Samples | θ | β | βcosθ | 4sinθ | 
|---|---|---|---|---|---|
| (110) | Hot-forged | 22.260 | 0.345 | 0.320 | 1.515 | 
| 750 °C-3 h | 22.320 | 0.281 | 0.260 | 1.519 | |
| 750 °C-25 h | 22.280 | 0.286 | 0.265 | 1.517 | |
| (200) | Hot-forged | 32.340 | 0.903 | 0.763 | 2.140 | 
| 750 °C-3 h | 32.430 | 0.513 | 0.433 | 2.145 | |
| 750 °C-25 h | 32.400 | 0.560 | 0.473 | 2.143 | |
| (211) | Hot-forged | 41.010 | 0.789 | 0.595 | 2.625 | 
| 750 °C-3 h | 41.070 | 0.538 | 0.406 | 2.628 | |
| 750 °C-25 h | 41.020 | 0.576 | 0.435 | 2.625 | 
| Samples | σs (MPa) | σg (MPa) | σd (MPa) | σp (MPa) | 
|---|---|---|---|---|
| Hot-forged | 224.48 | 142.86 | 312.98 | - | 
| 750 °C-3 h | 92.11 | 137.65 | 187.85 | 102.80 | 
| 750 °C-25 h | 46.37 | 133.52 | 171.64 | 139.61 | 
Table 6 Contributions of four strengthening mechanisms to the yield strength of the ODS steel in different states
| Samples | σs (MPa) | σg (MPa) | σd (MPa) | σp (MPa) | 
|---|---|---|---|---|
| Hot-forged | 224.48 | 142.86 | 312.98 | - | 
| 750 °C-3 h | 92.11 | 137.65 | 187.85 | 102.80 | 
| 750 °C-25 h | 46.37 | 133.52 | 171.64 | 139.61 | 
| ODS steel | Preparation methods | Oxides | Size of oxides | Yield strength (MPa)/Elongation (%) | 
|---|---|---|---|---|
| ODS-316L-D150 [ | Powder metallurgy + hot extrusion | Y2O3 | Submicron | 320/39 | 
| ODS-EUROFER 97 [ | Powder metallurgy + hot isostatic pressing | Y2O3 | 1-40 nm | 633/3.3 | 
| CNI-I-ODS [ | Vacuum induction melting | Y2O3, Y(O, C)-phase | 550-900 nm | 482/22.7 | 
| 9Cr-ODS [ | Fe2O3 oxygen carrier melting | Y-O rich particles | 0.2-1.1 µm | 730/11.3 | 
| T91-ODS [ | Vacuum induction melting | Y2O3 | 2-5 µm | −/10.2 | 
| T91-ODS [ | Y2O3 colloidal + vacuum melting | Y2O3 | Microns | - | 
| ODS-316L [ | Precursor powder + sub-rapid solidification | (Er, Ti)- oxides, Ti-O rich particles | 100-350 nm, < 10 nm | 411/33 | 
| Sample of 750 °C-25 h in this work | Zone melting with built-in precursor powder (ZMPP) + forging + aging | Y-Si-O | 6 nm | 506/23.3 | 
Table 7 Mechanical properties and precipitation behavior of ODS steels prepared by different processes
| ODS steel | Preparation methods | Oxides | Size of oxides | Yield strength (MPa)/Elongation (%) | 
|---|---|---|---|---|
| ODS-316L-D150 [ | Powder metallurgy + hot extrusion | Y2O3 | Submicron | 320/39 | 
| ODS-EUROFER 97 [ | Powder metallurgy + hot isostatic pressing | Y2O3 | 1-40 nm | 633/3.3 | 
| CNI-I-ODS [ | Vacuum induction melting | Y2O3, Y(O, C)-phase | 550-900 nm | 482/22.7 | 
| 9Cr-ODS [ | Fe2O3 oxygen carrier melting | Y-O rich particles | 0.2-1.1 µm | 730/11.3 | 
| T91-ODS [ | Vacuum induction melting | Y2O3 | 2-5 µm | −/10.2 | 
| T91-ODS [ | Y2O3 colloidal + vacuum melting | Y2O3 | Microns | - | 
| ODS-316L [ | Precursor powder + sub-rapid solidification | (Er, Ti)- oxides, Ti-O rich particles | 100-350 nm, < 10 nm | 411/33 | 
| Sample of 750 °C-25 h in this work | Zone melting with built-in precursor powder (ZMPP) + forging + aging | Y-Si-O | 6 nm | 506/23.3 | 
| [1] | M.D. Mathew, Prog. Nucl. Energ. 143, 104080 (2022) | 
| [2] | B.W. Brook, A. Alonso, D.A. Meneley, J. Misak, T. Blees, J.B. van Erp, Sustain. Mater. Technol. 1-2, 8 (2014) | 
| [3] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013) | 
| [4] | G.S. Was, D. Petti, S. Ukai, S. Zinkle, J. Nucl. Mater. 527, 151837 (2019) | 
| [5] | S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009) | 
| [6] | S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Nucl. Fusion 57, 092005 (2017) | 
| [7] | S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002) | 
| [8] | V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, B.N. Goshchitskii, Y. Tian, W. Qun, S. Jiguang, J. Nucl. Mater. 295, 265 (2001) | 
| [9] | X. Zhou, H. Chen, C. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 34, 187 (2021) | 
| [10] | H. Jia, Z. Zhou, S. Li, Mater. Charact. 187, 111876 (2022) | 
| [11] | E. Vasquez, P.F. Giroux, F. Lomello, A. Chniouel, H. Maskrot, F. Schuster, P. Castany, J. Mater. Process. Technol. 267, 403 (2019) | 
| [12] | F. Yan, J. Li, Y. Li, L. Xiong, S. Liu, Acta Metall. Sin. (Engl. Lett.) 34, 963 (2021) | 
| [13] | Z. Shi, F. Han, Mater. Des. 66, 304 (2015) | 
| [14] | Z. Hong, X. Zhang, Q. Yan, Y. Chen, J. Alloys Compd. 770, 831 (2019) | 
| [15] | H. Yin, B. Wei, A. Shmatok, J. Yang, M.F. Salek, L. Beckingham, B. Prorok, J. Wang, X. Lou, J. Mater. Process. Technol. 322, 118191 (2023) | 
| [16] | X. Zhang, C. Hou, J. Zhang, X. Mao, Z. Chen, Y. Zhang, Y. Zhao, C. Song, Q. Zhai, Mater. Sci. Eng. A 876, 145185 (2023) | 
| [17] | R.L. Williamson, D.K. Melgaard, G.J. Shelmidine, J.J. Beaman, R. Morrison, Metall. Mater. Trans. B 35, 101 (2004) | 
| [18] | E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, Metall. Mater. Trans. B 222, 51 (2020) | 
| [19] | L. Song, X. Yang, Y. Zhao, W. Wang, X. Mao, J. Nucl. Mater. 519, 22 (2019) | 
| [20] | J. Li, X. Zhang, H. Ma, L. Xiong, S. Liu, Q. Ren, Z. Pang, Acta Metall. Sin. (Engl. Lett.) 36, 732 (2022) | 
| [21] | B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 756, 336 (2019) | 
| [22] | I.G. Wood, L. Vočadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodholt, J. Appl. Crystallogr. 37, 82 (2004) | 
| [23] | K. He, A. Brown, R. Brydson, D.V. Edmonds, J. Mater. Sci. 41, 5235 (2006) | 
| [24] | M.H. Korkut, O. Yilmaz, S. Buytoz, Surf. Coat. Technol. 157, 5 (2002) | 
| [25] | A. Ramar, P. Spätig, R. Schäublin, J. Nucl. Mater. 382, 210 (2008) | 
| [26] | F. Su, G. Xu, Z. Yao, H. Liu, Y. Chen, Metals-Basel. 12, 1 (2022) | 
| [27] | H. Wu, Y. Jiang, J. Shang, Y. Wang, F. Cao, J. Alloys Compd. 174520, 991 (2024) | 
| [28] | C.I. Pruncu, C. Hopper, P.A. Hooper, Z. Tan, H. Zhu, J. Lin, J. Jiang, J. Manuf. Process 57, 668 (2020) | 
| [29] | S. Karabiyik, Y. Alemdag, M. Atmaca, G. Purcek, A.P. Hekimoglu, JOM 76, 807 (2024) | 
| [30] | J. Li, Y. Liu, Y. Wang, B. Liu, B. Lu, X. Liang, Y. Liu, Mater. Sci. Eng. Powder Metall. 17, 687 (2012) | 
| [31] | A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids, vol. 42 (Springer, Cham, 2014), p.115 | 
| [32] | X. Xu, Z. Liu, P. Dang, M. Tan, Mater. Sci. Technol. 13, 4 (2005) | 
| [33] | H. Huang, G. Yang, G. Zhao, X. Mao, X. Gan, Q. Yin, H. Yi, Mater. Sci. Eng. A 736, 148 (2018) | 
| [34] | N. Hansen, Mater. Sci. Eng. A 409, 39 (2005) | 
| [35] | J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, H. Abe, Mater. Sci. Eng. A 673, 624 (2016) | 
| [36] | M.E. Kassner, Acta Mater. 52, 1 (2004) | 
| [37] | A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, P. Bonnaillie, J. Nucl. Mater. 405, 95 (2010) | 
| [38] | M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, B. Fournier, J. Nucl. Mater. 428, 90 (2012) | 
| [39] | S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, Mater. Sci. Eng. A 510-511, 115 (2009) | 
| [40] | R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, A. Möslang, Mater. Sci. Eng. A 534, 142 (2012) | 
| [41] | J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016) | 
| [42] | Z. Xiong, I. Timokhina, E. Pereloma, Prog. Mater. Sci. 118, 100764 (2021) | 
| [43] | R.E. Stoller, S.J. Zinkle, J. Nucl. Mater. 283-287, 349 (2000) | 
| [44] | P. Yan, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, J. Alloys Compd. 739, 368 (2018) | 
| [45] | S.W. Baek, E.J. Song, J.H. Kim, Y.H. Lee, K.S. Ryu, S.W. Kim, Fusion Eng. Des. 121, 105 (2017) | 
| [46] | R. Schaeublin, T. Leguey, P. Spätig, N. Baluc, M. Victoria, J. Nucl. Mater. 307-311, 778 (2002) | 
| [47] | J. Feng, Q. Yan, X. Zhang, Z. Hong, Y. Chen, J. Mater. Res. Technol. 8, 3859 (2019) | 
| [48] | Z. Shi, F. Han, Mater. Res. Innov. 19, S5-832 (2015) | 
| [49] | K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, K. Verbeken, Ceram. Int. 40, 14319 (2014) | 
| [1] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. | 
| [2] | Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452. | 
| [3] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. | 
| [4] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. | 
| [5] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. | 
| [6] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. | 
| [7] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. | 
| [8] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. | 
| [9] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. | 
| [10] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. | 
| [11] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. | 
| [12] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. | 
| [13] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. | 
| [14] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. | 
| [15] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			