Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1397-1409.DOI: 10.1007/s40195-025-01875-5
Previous Articles Next Articles
Haoyu Cheng1, Chenyang Hou1, Jianlei Zhang1(
), Xiaodong Mao2(
), Yuanxiang Zhang3, Yanyun Zhao4, Chulun Shen1, Changjiang Song1(
)
Received:2024-11-05
Revised:2025-01-09
Accepted:2025-02-21
Online:2025-05-13
Published:2025-05-13
Contact:
Jianlei Zhang, Xiaodong Mao, Changjiang Song
Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409.
Add to citation manager EndNote|Ris|BibTeX
| C | Si | Cr | Mo | Nb | V | Fe |
|---|---|---|---|---|---|---|
| 0.1 | 0.3 | 9.25 | 0.95 | 0.087 | 0.22 | Bal. |
Table 1 Chemical compositions of commercial P91 alloy steel (wt%)
| C | Si | Cr | Mo | Nb | V | Fe |
|---|---|---|---|---|---|---|
| 0.1 | 0.3 | 9.25 | 0.95 | 0.087 | 0.22 | Bal. |
Fig. 2 EPMA micrograph of the as-cast a and microstructure analysis of the hot-forged ODS steel: b EPMA micrograph, c XRD pattern, d EBSD orientation color map and e EPMA elemental distribution maps
Fig. 7 TEM images and TEM-EDS analysis of the as-forged ODS steel sample: a BF image of the martensite matrix, b further magnified image of the martensite matrix, c SAED pattern of the precipitates, d TEM-EDS analysis of the precipitates, e SAED pattern of the matrix
Fig. 8 TEM images and EDS results of the aged ODS steel sample at 750 °C for 3 h: a BF image of the martensite matrix, b further magnified image of the Cr-rich precipitates, c SAED pattern of the precipitates, d high-resolution image of nano-oxide precipitates, e FFT pattern of nano-oxide precipitates, f TEM-EDS analysis of the Cr-rich precipitates
Fig. 9 TEM images of the aged ODS steel sample at 750 °C for 25 h: a BF image of the matrix, b high-resolution image of nano-precipitates, c FFT pattern of nano-precipitates
| Samples | Size (nm) | Number density (m−3) |
|---|---|---|
| 750 °C-3 h | 4.9 ± 1.2 | 4.81 × 1023 |
| 750 °C-25 h | 6.2 ± 1.8 | 7.64 × 1023 |
Table 2 Statistical analysis of nanoparticle size and number density in the aged ODS steel samples at 750 °C for 3 h and 25 h
| Samples | Size (nm) | Number density (m−3) |
|---|---|---|
| 750 °C-3 h | 4.9 ± 1.2 | 4.81 × 1023 |
| 750 °C-25 h | 6.2 ± 1.8 | 7.64 × 1023 |
| Samples | Yield strength (MPa) | Tensile strength (MPa) | Total elongation (%) |
|---|---|---|---|
| As-forged | 871 ± 8 | 1253 ± 13 | 5.0 ± 2.3 |
| 750 °C-3 h | 529 ± 10 | 669 ± 7 | 11.0 ± 2.1 |
| 750 °C-10 h | 493 ± 9 | 644 ± 12 | 13.5 ± 4.3 |
| 750 °C-20 h | 496 ± 2 | 645 ± 2 | 21.9 ± 0.6 |
| 750 °C-25 h | 506 ± 2 | 660 ± 5 | 23.3 ± 0.2 |
Table 3 Tensile properties of the ODS steel under various conditions
| Samples | Yield strength (MPa) | Tensile strength (MPa) | Total elongation (%) |
|---|---|---|---|
| As-forged | 871 ± 8 | 1253 ± 13 | 5.0 ± 2.3 |
| 750 °C-3 h | 529 ± 10 | 669 ± 7 | 11.0 ± 2.1 |
| 750 °C-10 h | 493 ± 9 | 644 ± 12 | 13.5 ± 4.3 |
| 750 °C-20 h | 496 ± 2 | 645 ± 2 | 21.9 ± 0.6 |
| 750 °C-25 h | 506 ± 2 | 660 ± 5 | 23.3 ± 0.2 |
| Samples | C | Si | Nb | Mo | Cr |
|---|---|---|---|---|---|
| Hot-forged | 0.10 | 0.29 | 0.08 | 0.91 | 9.10 |
| 750 °C-3 h | 0.07 | 0.21 | 0.08 | 0.88 | 8.71 |
| 750 °C-25 h | 0.06 | 0.19 | 0.07 | 0.80 | 8.60 |
Table 4 Elemental content analysis (wt%) of the ODS steel samples
| Samples | C | Si | Nb | Mo | Cr |
|---|---|---|---|---|---|
| Hot-forged | 0.10 | 0.29 | 0.08 | 0.91 | 9.10 |
| 750 °C-3 h | 0.07 | 0.21 | 0.08 | 0.88 | 8.71 |
| 750 °C-25 h | 0.06 | 0.19 | 0.07 | 0.80 | 8.60 |
| Peaks | Samples | θ | β | βcosθ | 4sinθ |
|---|---|---|---|---|---|
| (110) | Hot-forged | 22.260 | 0.345 | 0.320 | 1.515 |
| 750 °C-3 h | 22.320 | 0.281 | 0.260 | 1.519 | |
| 750 °C-25 h | 22.280 | 0.286 | 0.265 | 1.517 | |
| (200) | Hot-forged | 32.340 | 0.903 | 0.763 | 2.140 |
| 750 °C-3 h | 32.430 | 0.513 | 0.433 | 2.145 | |
| 750 °C-25 h | 32.400 | 0.560 | 0.473 | 2.143 | |
| (211) | Hot-forged | 41.010 | 0.789 | 0.595 | 2.625 |
| 750 °C-3 h | 41.070 | 0.538 | 0.406 | 2.628 | |
| 750 °C-25 h | 41.020 | 0.576 | 0.435 | 2.625 |
Table 5 Values of θ, β, βcosθ, and 4sinθ for samples in different states
| Peaks | Samples | θ | β | βcosθ | 4sinθ |
|---|---|---|---|---|---|
| (110) | Hot-forged | 22.260 | 0.345 | 0.320 | 1.515 |
| 750 °C-3 h | 22.320 | 0.281 | 0.260 | 1.519 | |
| 750 °C-25 h | 22.280 | 0.286 | 0.265 | 1.517 | |
| (200) | Hot-forged | 32.340 | 0.903 | 0.763 | 2.140 |
| 750 °C-3 h | 32.430 | 0.513 | 0.433 | 2.145 | |
| 750 °C-25 h | 32.400 | 0.560 | 0.473 | 2.143 | |
| (211) | Hot-forged | 41.010 | 0.789 | 0.595 | 2.625 |
| 750 °C-3 h | 41.070 | 0.538 | 0.406 | 2.628 | |
| 750 °C-25 h | 41.020 | 0.576 | 0.435 | 2.625 |
| Samples | σs (MPa) | σg (MPa) | σd (MPa) | σp (MPa) |
|---|---|---|---|---|
| Hot-forged | 224.48 | 142.86 | 312.98 | - |
| 750 °C-3 h | 92.11 | 137.65 | 187.85 | 102.80 |
| 750 °C-25 h | 46.37 | 133.52 | 171.64 | 139.61 |
Table 6 Contributions of four strengthening mechanisms to the yield strength of the ODS steel in different states
| Samples | σs (MPa) | σg (MPa) | σd (MPa) | σp (MPa) |
|---|---|---|---|---|
| Hot-forged | 224.48 | 142.86 | 312.98 | - |
| 750 °C-3 h | 92.11 | 137.65 | 187.85 | 102.80 |
| 750 °C-25 h | 46.37 | 133.52 | 171.64 | 139.61 |
| ODS steel | Preparation methods | Oxides | Size of oxides | Yield strength (MPa)/Elongation (%) |
|---|---|---|---|---|
| ODS-316L-D150 [ | Powder metallurgy + hot extrusion | Y2O3 | Submicron | 320/39 |
| ODS-EUROFER 97 [ | Powder metallurgy + hot isostatic pressing | Y2O3 | 1-40 nm | 633/3.3 |
| CNI-I-ODS [ | Vacuum induction melting | Y2O3, Y(O, C)-phase | 550-900 nm | 482/22.7 |
| 9Cr-ODS [ | Fe2O3 oxygen carrier melting | Y-O rich particles | 0.2-1.1 µm | 730/11.3 |
| T91-ODS [ | Vacuum induction melting | Y2O3 | 2-5 µm | −/10.2 |
| T91-ODS [ | Y2O3 colloidal + vacuum melting | Y2O3 | Microns | - |
| ODS-316L [ | Precursor powder + sub-rapid solidification | (Er, Ti)- oxides, Ti-O rich particles | 100-350 nm, < 10 nm | 411/33 |
| Sample of 750 °C-25 h in this work | Zone melting with built-in precursor powder (ZMPP) + forging + aging | Y-Si-O | 6 nm | 506/23.3 |
Table 7 Mechanical properties and precipitation behavior of ODS steels prepared by different processes
| ODS steel | Preparation methods | Oxides | Size of oxides | Yield strength (MPa)/Elongation (%) |
|---|---|---|---|---|
| ODS-316L-D150 [ | Powder metallurgy + hot extrusion | Y2O3 | Submicron | 320/39 |
| ODS-EUROFER 97 [ | Powder metallurgy + hot isostatic pressing | Y2O3 | 1-40 nm | 633/3.3 |
| CNI-I-ODS [ | Vacuum induction melting | Y2O3, Y(O, C)-phase | 550-900 nm | 482/22.7 |
| 9Cr-ODS [ | Fe2O3 oxygen carrier melting | Y-O rich particles | 0.2-1.1 µm | 730/11.3 |
| T91-ODS [ | Vacuum induction melting | Y2O3 | 2-5 µm | −/10.2 |
| T91-ODS [ | Y2O3 colloidal + vacuum melting | Y2O3 | Microns | - |
| ODS-316L [ | Precursor powder + sub-rapid solidification | (Er, Ti)- oxides, Ti-O rich particles | 100-350 nm, < 10 nm | 411/33 |
| Sample of 750 °C-25 h in this work | Zone melting with built-in precursor powder (ZMPP) + forging + aging | Y-Si-O | 6 nm | 506/23.3 |
| [1] | M.D. Mathew, Prog. Nucl. Energ. 143, 104080 (2022) |
| [2] | B.W. Brook, A. Alonso, D.A. Meneley, J. Misak, T. Blees, J.B. van Erp, Sustain. Mater. Technol. 1-2, 8 (2014) |
| [3] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013) |
| [4] | G.S. Was, D. Petti, S. Ukai, S. Zinkle, J. Nucl. Mater. 527, 151837 (2019) |
| [5] | S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009) |
| [6] | S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Nucl. Fusion 57, 092005 (2017) |
| [7] | S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002) |
| [8] | V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, B.N. Goshchitskii, Y. Tian, W. Qun, S. Jiguang, J. Nucl. Mater. 295, 265 (2001) |
| [9] | X. Zhou, H. Chen, C. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 34, 187 (2021) |
| [10] | H. Jia, Z. Zhou, S. Li, Mater. Charact. 187, 111876 (2022) |
| [11] | E. Vasquez, P.F. Giroux, F. Lomello, A. Chniouel, H. Maskrot, F. Schuster, P. Castany, J. Mater. Process. Technol. 267, 403 (2019) |
| [12] | F. Yan, J. Li, Y. Li, L. Xiong, S. Liu, Acta Metall. Sin. (Engl. Lett.) 34, 963 (2021) |
| [13] | Z. Shi, F. Han, Mater. Des. 66, 304 (2015) |
| [14] | Z. Hong, X. Zhang, Q. Yan, Y. Chen, J. Alloys Compd. 770, 831 (2019) |
| [15] | H. Yin, B. Wei, A. Shmatok, J. Yang, M.F. Salek, L. Beckingham, B. Prorok, J. Wang, X. Lou, J. Mater. Process. Technol. 322, 118191 (2023) |
| [16] | X. Zhang, C. Hou, J. Zhang, X. Mao, Z. Chen, Y. Zhang, Y. Zhao, C. Song, Q. Zhai, Mater. Sci. Eng. A 876, 145185 (2023) |
| [17] | R.L. Williamson, D.K. Melgaard, G.J. Shelmidine, J.J. Beaman, R. Morrison, Metall. Mater. Trans. B 35, 101 (2004) |
| [18] | E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, Metall. Mater. Trans. B 222, 51 (2020) |
| [19] | L. Song, X. Yang, Y. Zhao, W. Wang, X. Mao, J. Nucl. Mater. 519, 22 (2019) |
| [20] | J. Li, X. Zhang, H. Ma, L. Xiong, S. Liu, Q. Ren, Z. Pang, Acta Metall. Sin. (Engl. Lett.) 36, 732 (2022) |
| [21] | B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 756, 336 (2019) |
| [22] | I.G. Wood, L. Vočadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodholt, J. Appl. Crystallogr. 37, 82 (2004) |
| [23] | K. He, A. Brown, R. Brydson, D.V. Edmonds, J. Mater. Sci. 41, 5235 (2006) |
| [24] | M.H. Korkut, O. Yilmaz, S. Buytoz, Surf. Coat. Technol. 157, 5 (2002) |
| [25] | A. Ramar, P. Spätig, R. Schäublin, J. Nucl. Mater. 382, 210 (2008) |
| [26] | F. Su, G. Xu, Z. Yao, H. Liu, Y. Chen, Metals-Basel. 12, 1 (2022) |
| [27] | H. Wu, Y. Jiang, J. Shang, Y. Wang, F. Cao, J. Alloys Compd. 174520, 991 (2024) |
| [28] | C.I. Pruncu, C. Hopper, P.A. Hooper, Z. Tan, H. Zhu, J. Lin, J. Jiang, J. Manuf. Process 57, 668 (2020) |
| [29] | S. Karabiyik, Y. Alemdag, M. Atmaca, G. Purcek, A.P. Hekimoglu, JOM 76, 807 (2024) |
| [30] | J. Li, Y. Liu, Y. Wang, B. Liu, B. Lu, X. Liang, Y. Liu, Mater. Sci. Eng. Powder Metall. 17, 687 (2012) |
| [31] | A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids, vol. 42 (Springer, Cham, 2014), p.115 |
| [32] | X. Xu, Z. Liu, P. Dang, M. Tan, Mater. Sci. Technol. 13, 4 (2005) |
| [33] | H. Huang, G. Yang, G. Zhao, X. Mao, X. Gan, Q. Yin, H. Yi, Mater. Sci. Eng. A 736, 148 (2018) |
| [34] | N. Hansen, Mater. Sci. Eng. A 409, 39 (2005) |
| [35] | J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, H. Abe, Mater. Sci. Eng. A 673, 624 (2016) |
| [36] | M.E. Kassner, Acta Mater. 52, 1 (2004) |
| [37] | A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, P. Bonnaillie, J. Nucl. Mater. 405, 95 (2010) |
| [38] | M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, B. Fournier, J. Nucl. Mater. 428, 90 (2012) |
| [39] | S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, Mater. Sci. Eng. A 510-511, 115 (2009) |
| [40] | R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, A. Möslang, Mater. Sci. Eng. A 534, 142 (2012) |
| [41] | J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016) |
| [42] | Z. Xiong, I. Timokhina, E. Pereloma, Prog. Mater. Sci. 118, 100764 (2021) |
| [43] | R.E. Stoller, S.J. Zinkle, J. Nucl. Mater. 283-287, 349 (2000) |
| [44] | P. Yan, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, J. Alloys Compd. 739, 368 (2018) |
| [45] | S.W. Baek, E.J. Song, J.H. Kim, Y.H. Lee, K.S. Ryu, S.W. Kim, Fusion Eng. Des. 121, 105 (2017) |
| [46] | R. Schaeublin, T. Leguey, P. Spätig, N. Baluc, M. Victoria, J. Nucl. Mater. 307-311, 778 (2002) |
| [47] | J. Feng, Q. Yan, X. Zhang, Z. Hong, Y. Chen, J. Mater. Res. Technol. 8, 3859 (2019) |
| [48] | Z. Shi, F. Han, Mater. Res. Innov. 19, S5-832 (2015) |
| [49] | K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, K. Verbeken, Ceram. Int. 40, 14319 (2014) |
| [1] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. |
| [2] | Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452. |
| [3] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. |
| [4] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
| [5] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
| [6] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
| [7] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
| [8] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
| [9] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
| [10] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
| [11] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
| [12] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
| [13] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
| [14] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
| [15] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
