Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2289-2299.DOI: 10.1007/s40195-025-01932-z
Previous Articles Next Articles
Yiran Xiong1,2, Ziyu Zhang1(
), Xinqiang Wu1(
), Jibo Tan1, Xiang Wang1
Received:2025-04-30
Revised:2025-06-24
Accepted:2025-07-07
Online:2025-12-10
Published:2025-11-15
Contact:
Ziyu Zhang, zyzhang14b@imr.ac.cn;Xinqiang Wu, xqwu@imr.ac.cn
Yiran Xiong, Ziyu Zhang, Xinqiang Wu, Jibo Tan, Xiang Wang. Dissolution Behaviors of Corrosion Products on 316LN Stainless Steel in Simulated Shutdown Acid-Reducing Water Chemistry[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2289-2299.
Add to citation manager EndNote|Ris|BibTeX
| C | N | Cr | Ni | Mo | Mn | P | S | Si | Fe |
|---|---|---|---|---|---|---|---|---|---|
| 0.015 | 0.12 | 16.92 | 12.92 | 2.08 | 1.37 | 0.018 | < 0.003 | 0.35 | Bal. |
Table 1 Compositions of 316LN SS investigated in the present work (wt%)
| C | N | Cr | Ni | Mo | Mn | P | S | Si | Fe |
|---|---|---|---|---|---|---|---|---|---|
| 0.015 | 0.12 | 16.92 | 12.92 | 2.08 | 1.37 | 0.018 | < 0.003 | 0.35 | Bal. |
| Test solutions | B (ppm) | Li (ppm) | T (°C) | pHT |
|---|---|---|---|---|
| 1 | 1500 | 2.3 | 300 | 6.83 |
| 2 | 3000 | 0 | 300 | 5.00 |
| 3 | 5000 | 0 | 300 | 4.84 |
| 4 | 3000 | 0 | 150 | 4.57 |
Table 2 Compositions of test solutions (ppm, by weight)
| Test solutions | B (ppm) | Li (ppm) | T (°C) | pHT |
|---|---|---|---|---|
| 1 | 1500 | 2.3 | 300 | 6.83 |
| 2 | 3000 | 0 | 300 | 5.00 |
| 3 | 5000 | 0 | 300 | 4.84 |
| 4 | 3000 | 0 | 150 | 4.57 |
Fig. 1 SEM morphologies of the oxide films formed on 316LN SS after a pre-oxidized for 28 days in 1500 ppm B and 2.3 ppm Li solution at 300 °C, b pre-oxidized for 28 days and then exposed to 3000 ppm B solution at 150 °C for 14 days
Fig. 2 TEM observation and analysis of the oxide film formed on 316LN SS after pre-oxidized for 28 days. a Cross-sectional morphology of the oxide film, b element maps of Fe, Cr, Ni and O corresponding to a, c composition profile corresponding to the line shown in a, d, e HRTEM image and FFT image of the outer oxides in area 1, f, g HRTEM image and FFT image of the inner oxides in area 2
Fig. 3 TEM observation and element maps of the oxide film formed on 316LN SS after 28 days of pre-oxidation and then exposed to simulated shutdown acid-reducing water chemistry at 150 °C for 14 days. a Cross-sectional morphology of the oxide film, b element maps of Fe, Cr, Ni and O corresponding to a
Fig. 4 TEM observation and compositional analysis of the oxide film formed on 316LN SS after 28 days of pre-oxidation and then exposed to simulated shutdown acid-reducing water chemistry at 150 °C for 14 days. a Cross-sectional morphology of the oxide film containing undissolved outer oxide particle, b, c HRTEM image and FFT image of the outer oxides in area 1, d, e HRTEM image and FFT image of the inner oxides in area 2, f composition profile corresponding to the line shown in a, g EDS analysis of the dissolved outer oxide particle, h, i HRTEM image and FFT image of the dissolved outer oxide particle in g
Fig. 5 SEM morphologies of the oxide films formed on 316LN SS after 7 days of pre-oxidation and then exposed to borated and lithiated high-temperature water and different simulated shutdown acid-reducing water chemistry for 72 h. a 1500 ppm B and 2.3 ppm Li solution at 300 °C, b 3000 ppm B solution at 300 °C, c 5000 ppm B solution at 300 °C, d 3000 ppm B solution at 150 °C
Fig. 6 Potentiodynamic polarization curves of 316LN SS after 7 days of pre-oxidation and then exposed to borated and lithiated high-temperature water at 300 °C and different simulated shutdown acid-reducing water chemistry for 72 h
| Test solutions | OCP (V vs SHE) | Ecorr (V vs SHE) | Icorr (μA cm−2) |
|---|---|---|---|
| 1500 ppm B + 2.3 ppm Li, 300 °C | − 0.357 (± 0.010) | − 0.445 (± 0.007) | 14.81 (± 0.364) |
| 3000 ppm B, 300 °C | − 0.189 (± 0.022) | − 0.271 (± 0.016) | 3.29 (± 1.004) |
| 5000 ppm B, 300 °C | − 0.320 (± 0.018) | − 0.424 (± 0.012) | 5.25 (± 0.244) |
| 3000 ppm B, 150 °C | − 0.003 (± 0.002) | 0.051 (± 0.008) | 7.75 (± 1.072) |
Table 3 Electrochemical parameters obtained from potentiodynamic polarization curves of samples in different water chemistry environments
| Test solutions | OCP (V vs SHE) | Ecorr (V vs SHE) | Icorr (μA cm−2) |
|---|---|---|---|
| 1500 ppm B + 2.3 ppm Li, 300 °C | − 0.357 (± 0.010) | − 0.445 (± 0.007) | 14.81 (± 0.364) |
| 3000 ppm B, 300 °C | − 0.189 (± 0.022) | − 0.271 (± 0.016) | 3.29 (± 1.004) |
| 5000 ppm B, 300 °C | − 0.320 (± 0.018) | − 0.424 (± 0.012) | 5.25 (± 0.244) |
| 3000 ppm B, 150 °C | − 0.003 (± 0.002) | 0.051 (± 0.008) | 7.75 (± 1.072) |
| ${\text{Fe}}_{3} {\text{O}}_{4}$ | |
|---|---|
| 1 | ${\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{H}}^{ + } + {\text{H}}_{2} = 3{\text{Fe}}^{2 + } + 4{\text{H}}_{2} {\text{O}}$ |
| 2 | $2{\text{Fe}}_{3} {\text{O}}_{4} + 18{\text{H}}^{ + } = 6{\text{Fe}}^{3 + } + 8{\text{H}}_{2} {\text{O}} + {\text{H}}_{2}$ |
| 3 | ${\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{CrO}}_{2}^{ - } + 6{\text{H}}^{ + } + {\text{H}}_{2} = 3{\text{FeCr}}_{2} {\text{O}}_{4} + 4{\text{H}}_{2} {\text{O}}$ |
| 4 | ${\text{Fe}}_{3} {\text{O}}_{4} + 2{\text{H}}_{2} {\text{O}} + {\text{H}}_{2} = 3{\text{HFeO}}_{2}^{ - } + 3{\text{H}}^{ + }$ |
| ${\text{NiFe}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{NiFe}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Ni}}^{2 + } + {\text{Fe}}_{2} {\text{O}}_{3} + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{NiFe}}_{2} {\text{O}}_{4} + 6{\text{H}}^{ + } + {\text{H}}_{2} = {\text{Ni}}^{2 + } + 2{\text{Fe}}^{2 + } + 4{\text{H}}_{2} {\text{O}}$ |
| 3 | ${\text{NiFe}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{HNiO}}_{2}^{ - } + {\text{Fe}}_{2} {\text{O}}_{3} + {\text{H}}^{ + } { }$ |
| ${\text{FeCr}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{FeCr}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Fe}}^{2 + } + {\text{Cr}}_{2} {\text{O}}_{3} + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{FeCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} = {\text{Fe}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
| 3 | ${\text{FeCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{FeO}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
| 4 | $3{\text{FeCr}}_{2} {\text{O}}_{4} + 4{\text{H}}_{2} {\text{O}} = {\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{CrO}}_{2}^{ - } + 6{\text{H}}^{ + } + {\text{H}}_{2}$ |
| 5 | $2{\text{FeCr}}_{2} {\text{O}}_{4} + 3{\text{H}}_{2} {\text{O}} = {\text{Fe}}_{2} {\text{O}}_{3} + 4{\text{CrO}}_{2}^{ - } + 4{\text{H}}^{ + } + {\text{H}}_{2}$ |
| ${\text{NiCr}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{NiCr}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Cr}}_{2} {\text{O}}_{3} + {\text{Ni}}^{2 + } + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{NiCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{NiO}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
Table 4 Equilibrium equations used for the calculation of the solubilities of possible spinel oxides formed in high-temperature water in a wide pH value range
| ${\text{Fe}}_{3} {\text{O}}_{4}$ | |
|---|---|
| 1 | ${\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{H}}^{ + } + {\text{H}}_{2} = 3{\text{Fe}}^{2 + } + 4{\text{H}}_{2} {\text{O}}$ |
| 2 | $2{\text{Fe}}_{3} {\text{O}}_{4} + 18{\text{H}}^{ + } = 6{\text{Fe}}^{3 + } + 8{\text{H}}_{2} {\text{O}} + {\text{H}}_{2}$ |
| 3 | ${\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{CrO}}_{2}^{ - } + 6{\text{H}}^{ + } + {\text{H}}_{2} = 3{\text{FeCr}}_{2} {\text{O}}_{4} + 4{\text{H}}_{2} {\text{O}}$ |
| 4 | ${\text{Fe}}_{3} {\text{O}}_{4} + 2{\text{H}}_{2} {\text{O}} + {\text{H}}_{2} = 3{\text{HFeO}}_{2}^{ - } + 3{\text{H}}^{ + }$ |
| ${\text{NiFe}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{NiFe}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Ni}}^{2 + } + {\text{Fe}}_{2} {\text{O}}_{3} + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{NiFe}}_{2} {\text{O}}_{4} + 6{\text{H}}^{ + } + {\text{H}}_{2} = {\text{Ni}}^{2 + } + 2{\text{Fe}}^{2 + } + 4{\text{H}}_{2} {\text{O}}$ |
| 3 | ${\text{NiFe}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{HNiO}}_{2}^{ - } + {\text{Fe}}_{2} {\text{O}}_{3} + {\text{H}}^{ + } { }$ |
| ${\text{FeCr}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{FeCr}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Fe}}^{2 + } + {\text{Cr}}_{2} {\text{O}}_{3} + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{FeCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} = {\text{Fe}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
| 3 | ${\text{FeCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{FeO}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
| 4 | $3{\text{FeCr}}_{2} {\text{O}}_{4} + 4{\text{H}}_{2} {\text{O}} = {\text{Fe}}_{3} {\text{O}}_{4} + 6{\text{CrO}}_{2}^{ - } + 6{\text{H}}^{ + } + {\text{H}}_{2}$ |
| 5 | $2{\text{FeCr}}_{2} {\text{O}}_{4} + 3{\text{H}}_{2} {\text{O}} = {\text{Fe}}_{2} {\text{O}}_{3} + 4{\text{CrO}}_{2}^{ - } + 4{\text{H}}^{ + } + {\text{H}}_{2}$ |
| ${\text{NiCr}}_{2} {\text{O}}_{4}$ | |
| 1 | ${\text{NiCr}}_{2} {\text{O}}_{4} + 2{\text{H}}^{ + } = {\text{Cr}}_{2} {\text{O}}_{3} + {\text{Ni}}^{2 + } + {\text{H}}_{2} {\text{O}}$ |
| 2 | ${\text{NiCr}}_{2} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} = {\text{NiO}} + 2{\text{CrO}}_{2}^{ - } + 2{\text{H}}^{ + }$ |
Fig. 9 Schematic of the dissolution model of the outer oxide film on 316LN SS during the shutdown acid-reducing phase. a Borated and lithiated high-temperature water at 300 °C, b the initial stage of boration at 300 °C, c low-temperature stage (150 °C) during the acid-reducing phase
| [1] | C.C. Lin, Prog. Nucl. Energy 51, 207 (2009) |
| [2] | S. Uchida, M. Miki, T. Masuda, H. Nagao, K. Otoha, J. Nucl. Sci. Technol. 24, 593 (1987) |
| [3] |
H. Igarashi, K. Ohsumi, S. Uchida, T. Matsui, J. Nucl. Sci. Technol. 36, 805 (2012)
DOI URL |
| [4] |
K. Ishigure, K. Abe, N. Nakajima, H. Nagao, S. Uchida, J. Nucl. Sci. Technol. 26, 145 (2012)
DOI URL |
| [5] |
H. Hosokawa, M. Nagase, J. Nucl. Sci. Technol. 41, 682 (2004)
DOI URL |
| [6] |
S. Holdsworth, F. Scenini, M.G. Burke, G. Bertali, T. Ito, Y. Wada, H. Hosokawa, N. Ota, M. Nagase, Corros. Sci. 140, 241 (2018)
DOI URL |
| [7] | X.C. Liu, H.L. Ming, Z.M. Zhang, J.Q. Wang, L.C. Tang, H. Qian, Y.C. Xie, E.H. Han, Acta Metall. Sin.-Engl. Lett. 32, 1437 (2019) |
| [8] | S. Qiu, H. Liu, M. Jiang, S. Min, Y. Gu, Q. Wang, J. Yang, X. Li, Z. Chen, J. Hou, Acta Metall. Sin.-Engl. Lett. 36, 529 (2022) |
| [9] | I. Mailand, H. Venz, Shutdown chemistry-an approved method to reduce dose rate, In: the International Conference on Water Chemistry of Nuclear Reactor Systems, Berlin, Germany, 15-18 September (2008) |
| [10] | S. Taunier, P. Varry, A. Tigeras, M. Bachet, L. Guinard, J.L. Bretelle, A. Rocher, New primary shutdown and startup chemistry guidelines recently developed for EDF PWRs, In: the International Conference on Water Chemistry of Nuclear Reactor Systems, Berlin, Germany, 15-18 September (2008) |
| [11] | I. Mailand, P. Franz, Dose rate and contribution of the nuclides on the primary components during shutdown chemistry In Beznau NPP, In: the International Conference on Water Chemistry of Nuclear Reactor Systems, Quebec, Canada, 3-7 October (2010) |
| [12] | I. Mailand, H. Venz, VGB PowerTech 87, 74 (2007) |
| [13] | PWR Shutdown Chemistry Practices, EPRI, Palo Alto, CA: 1998. Report TR-109569 |
| [14] | M.R. Branham, M.J. Drost, Unexpected crud release resulting from chemical intrusion during shutdown at oconee nuclear station. In: the International Conference on Water Chemistry in Nuclear Reactor Systems San Francisco, USA, 9-14 September (2018) |
| [15] | I.H. Rhee, B.G. Park, H.K. Ahn, Effect of temperature on particulate behavior of nickel ferrite. In: the 9th WSEAS International Conference on Simulation, Modelling and Optimization, Budapest, Hungary, 3-5 September (2009) |
| [16] |
D.D. Macdonald, A.C. Scott, P. Wentrcek, J. Electrochem. Soc. 126, 908 (1979)
DOI |
| [17] |
J. Chen, Q. Xiao, Z. Lu, X. Ru, H. Peng, Q. Xiong, H. Li, J. Nucl. Mater. 489, 137 (2017)
DOI URL |
| [18] |
X. Liu, X. Wu, E.H. Han, Corros. Sci. 65, 136 (2012)
DOI URL |
| [19] |
L. Peng, Z. Zhang, J. Tan, X. Wu, E.H. Han, W. Ke, Corros. Sci. 198, 110157 (2022)
DOI URL |
| [20] |
R.L. Tapping, R.D. Davidson, E. McAlpine, D.H. Lister, Corros. Sci. 26, 563 (1986)
DOI URL |
| [21] | S.E. Ziemniak, M. Hanson, Corros. Sci. 44, 2209 ( 2002) |
| [22] |
T. Terachi, T. Yamada, T. Miyamoto, K. Arioka, K. Fukuya, J. Nucl. Sci. Technol. 45, 975 (2008)
DOI URL |
| [23] | J.Z. Wang, J.Q. Wang, H.L. Ming, Z.M. Zhang, E.H. Han, Mater. Corros. 69, 580 (2018) |
| [24] |
S.E. Ziemniak, M. Hanson, P.C. Sander, Corros. Sci. 50, 2465 (2008)
DOI URL |
| [25] | P. Deng, E.H. Han, Q.J. Peng, C. Sun, Acta Metall. Sin.-Engl. Lett. 34, 174 (2020) |
| [26] | J.M. Shao, C.W. Du, X. Zhang, L.Y. Cui, Acta Metall. Sin.-Engl. Lett. 32, 89 (2018) |
| [27] |
E.H. Han, J.Q. Wang, X.Q. Wu, W. Ke, Acta Metall. Sin. 46, 1379 (2010)
DOI URL |
| [28] | B. Beverskog, I. Puigdomenech, Corros. Sci. 38, 2121 ( 1996) |
| [29] |
B. Beverskog, I. Puigdomenech, Corros. Sci. 39, 969 (1997)
DOI URL |
| [30] |
B. Beverskog, I. Puigdomenech, Corros. Sci. 39, 43 (1997)
DOI URL |
| [31] |
D. Cubicciotti, J. Nucl. Mater. 201, 176 (1993)
DOI URL |
| [32] |
Y. Hemmi, N. Ichikawa, N. Saito, T. Masuda, J. Nucl. Sci. Technol. 31, 1202 (1994)
DOI URL |
| [33] |
X. Liu, X. Wu, E.H. Han, Corros. Sci. 53, 3337 (2011)
DOI URL |
| [34] |
X. Liu, E.H. Han, X. Wu, Corros. Sci. 78, 200 (2014)
DOI URL |
| [35] |
H. Sun, X. Wu, E.H. Han, Y. Wei, Corros. Sci. 59, 334 (2012)
DOI URL |
| [36] |
J. Huang, X. Wu, E.H. Han, Corros. Sci. 51, 2976 (2009)
DOI URL |
| [37] |
J. Huang, X. Wu, E.H. Han, Corros. Sci. 52, 3444 (2010)
DOI URL |
| [38] | M. Bojinov, P. Kinnunen, K. Lundgren, G. Wikmark, J. Electrochem. Soc.152, B250 (2005) |
| [39] | E. Laney, M. Scrancher, B. Welsh, B. Osborne, M. Mantell, K. Garbett, A review of the shutdown and start of cycle primary water chemistry and elemental and radionuclide behaviour at Sizewell B, In: the International Conference on Water Chemistry of Nuclear Reactor Systems, San Francisco, USA, 9-14 September (2018) |
| [1] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
| [2] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
| [3] | Xin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022. |
| [4] | Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505. |
| [5] | Chao Han, Ying-Hua Wei, Hai-Feng Zhang, Zheng-Wang Zhu, Jing Li. Corrosion Resistance and Electrochemical Behaviour of Amorphous Ni84.9Cr7.4Si4.2Fe3.5 Alloy in Alkaline and Acidic Solutions [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1421-1436. |
| [6] | Arash Fattah-Alhosseini, Mojtaba Vakili-Azghandi, Mohsen K. Keshavarz. Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 274-281. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
