Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (1): 164-176.DOI: 10.1007/s40195-024-01773-2
Manzu Xu1, Leipeng Xie2, Shasha Yang1(), Chengguo Sui3, Qunchang Wang1, Qihua Long4, Minghui Chen1(
), Fuhui Wang1
Received:
2024-05-16
Revised:
2024-07-25
Accepted:
2024-07-27
Online:
2025-01-10
Published:
2024-10-12
Contact:
Shasha Yang, yangss@mail.neu.edu.cn; Minghui Chen, mhchen@mail.neu.edu.cn
Manzu Xu, Leipeng Xie, Shasha Yang, Chengguo Sui, Qunchang Wang, Qihua Long, Minghui Chen, Fuhui Wang. Heterostructured NiCrTi Alloy Prepared by Spark Plasma Sintering with Enhanced Mechanical Properties, Corrosion and Tribocorrosion Resistance[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 164-176.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Microstructures and phase compositions of NiCr and NiCrTi: a 3D SEM microstructures of NiCrTi, b XRD patterns, c and d EBSD maps of NiCr, NiCrTi, respectively
Fig. 2 TEM microstructures of NiCrTi: a, b bright field images and diffraction patterns at sites I, II, and III, c HR-TEM image illustrating the interfacial coherency between alloy and Ni3Ti with SAED patterns in regions I and II and d overlapping SAED image at the interface between alloy and Ni3Ti
Fig. 3 a Nanoindentation load-displacement curves for area 1 and area 2 in Fig. 1a, b the three-point bending load-displacement curves for NiCr and NiCrTi, c compressive stress-strain curves for NiCr and NiCrTi, d yield strength and strain of NiCrTi and comparison with other Ni matrix composites, stress distribution analyzed by finite element for e NiCr and f NiCrTi
Materials | Hardness (HV) | Bending strength (MPa) | Yield strength (MPa) | Compressive strength (MPa) | Ultimate plasticity strain (%) |
---|---|---|---|---|---|
NiCr | 216 ± 10 | Unbroken | 450 ± 36 | Unbroken | Unbroken |
NiCrTi | 441 ± 72 | 2084 ± 26 | 1321 ± 18 | 2470 ± 23 | 20 ± 0.3 |
Table 1 Mechanical properties of NiCr and NiCrTi
Materials | Hardness (HV) | Bending strength (MPa) | Yield strength (MPa) | Compressive strength (MPa) | Ultimate plasticity strain (%) |
---|---|---|---|---|---|
NiCr | 216 ± 10 | Unbroken | 450 ± 36 | Unbroken | Unbroken |
NiCrTi | 441 ± 72 | 2084 ± 26 | 1321 ± 18 | 2470 ± 23 | 20 ± 0.3 |
Fig. 5 Schematic diagram showing a homemade tribocorrosion testing setup, b1 evolution of OCP, b2 COF, potentiodynamic polarization curves for c NiCr, d NiCrTi during corrosion (static) and tribocorrosion (sliding) tests, respectively
Samples | Ecorr (V) | Jcorr (A cm−2) |
---|---|---|
NiCr-Static | − 0.325 | 3.07 × 10-7 |
NiCrTi -Static | − 0.297 | 2.33 × 10-7 |
NiCr-Sliding | − 0.552 | 3.13 × 10-6 |
NiCrTi- Sliding | − 0.538 | 2.98 × 10-6 |
Table 2 Electrochemical data obtained from the potentiodynamic curves by standard Tafel extrapolation
Samples | Ecorr (V) | Jcorr (A cm−2) |
---|---|---|
NiCr-Static | − 0.325 | 3.07 × 10-7 |
NiCrTi -Static | − 0.297 | 2.33 × 10-7 |
NiCr-Sliding | − 0.552 | 3.13 × 10-6 |
NiCrTi- Sliding | − 0.538 | 2.98 × 10-6 |
Fig. 6 Nyquist plots, Bode plots, and electrical equivalent circuits used to fit the EIS data obtained a1, a2 during corrosion (static), b1, b2 tribocorrosion (sliding) tests of NiCr and NiCrTi
Samples | Rs (Ω cm2) | n1 | Y0 (sn F cm−2) | Rct (Ω cm2) | n2 | Y0 (sn F cm−2) | Rf (Ω cm2) |
---|---|---|---|---|---|---|---|
NiCr-Static | 15.24 | 0.77 | 5.00 × 10-5 | 8.67 | 0.98 | 8.09 × 10-6 | 1.06 × 105 |
NiCrTi-Static | 13.98 | 0.81 | 2.97 × 10-5 | 7.51 | 0.85 | 2.26 × 10-5 | 2.43 × 105 |
NiCr-Sliding | 16.13 | 0.70 | 1.62 × 10-4 | 0.36 × 104 | / | / | / |
NiCrTi-Sliding | 16.68 | 0.81 | 6.17 × 10-5 | 1.02 × 104 | / | / | / |
Table 3 Equivalent circuit parameters obtained from the impedance data fitting
Samples | Rs (Ω cm2) | n1 | Y0 (sn F cm−2) | Rct (Ω cm2) | n2 | Y0 (sn F cm−2) | Rf (Ω cm2) |
---|---|---|---|---|---|---|---|
NiCr-Static | 15.24 | 0.77 | 5.00 × 10-5 | 8.67 | 0.98 | 8.09 × 10-6 | 1.06 × 105 |
NiCrTi-Static | 13.98 | 0.81 | 2.97 × 10-5 | 7.51 | 0.85 | 2.26 × 10-5 | 2.43 × 105 |
NiCr-Sliding | 16.13 | 0.70 | 1.62 × 10-4 | 0.36 × 104 | / | / | / |
NiCrTi-Sliding | 16.68 | 0.81 | 6.17 × 10-5 | 1.02 × 104 | / | / | / |
Fig. 7 Surface morphologies of a NiCr and b NiCrTi after sliding at applied potentials of −0.8 V, OCP, and 0.3 V in 3.5% NaCl, c the corresponding COF and d wear rate
Fig. 8 SEM surface morphology of wear tracks on a, b, c, g NiCr and d, e, f, i NiCrTi after sliding at applied potentials of − 0.8 V, OCP, and 0.3 V in 3.5% NaCl, h 3D surface topography of wear tracks
[1] | D. McClintock, M. Gussev, C. Campbell, K. Mao, T. Lach, W. Lu, J. Hachtel, K. Unocic, Acta Mater. 231, 117889 (2022) |
[2] | G. Koga, N. Birbilis, G. Zepon, C. Kiminami, W. Botta, M. Kaufman, A. Clarke, F. Coury, J. Alloys Compd. 884, 161107 (2021) |
[3] | S. Ghosh, G. Dey, R. Dusane, A. Grover, J. Alloys Compd. 426, 235 (2018) |
[4] | D. Liu, X. Cheng, X. Zhang, Y. Ding, Acta Metall. Sin. -Engl. Lett. 31, 1368 (2016) |
[5] | K. Hariharan, A. Iams, J. Zuback, T. Palmer, N. Sridhar, R. Alazemi, G. Frankel, E. Schindelholz, Corros. Sci. 230, 111945 (2024) |
[6] | N. Papageorgiou, A. von Bonin, N. Espallargas, Tribol. Int. 73, 177 (2014) |
[7] | K. Rehman, N. Sheng, S. Fan, S. Sun, G. Hou, Y. Zhou, X. Sun, Acta Metall. Sin. -Engl. Lett. 35, 1744 (2022) |
[8] | J. Chen, J. Wang, B. Chen, F. Yan, Tribol. Trans. 54, 514 (2011) |
[9] | X. Wang, Y. Jiang, Y. Wang, C. Ye, C. Du, Tribol. Int. 172, 107581 (2022) |
[10] | Y. Zhu, H. Liu, D. Zhang, J. Wang, F. Yan, Tribol. Int. 168, 107445 (2022) |
[11] | H. Ghassemi-Armaki, R. Maaß, S. Bhat, S. Sriram, J. Greer, K. Kumar, Acta Mater. 62, 197 (2014) |
[12] | Q. Huo, Y. Chen, B. Gao, Y. Liu, M. Liu, X. Chen, H. Zhou, Acta Metall. Sin. -Engl. Lett. 36, 343 (2023) |
[13] | J. Park, D. Kim, N. Mattern, K. Kim, E. Fleury, J. Eckert, J. Alloys Compd. 509, 367 (2011) |
[14] | I. Sabirov, Y. Estrin, M. Barnett, I. Timokhina, P. Hodgson, Acta Mater. 56, 2223 ( (2008) |
[15] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. USA 112, 14501 (2015) |
[16] | L. Yang, Z. Chen, X. Ma, D. Zhong, X. Zhao, L. Xiao, X. Fang, Mater. Sci. Eng. A 826, 141980 (2021) |
[17] |
P. Barriobero-Vila, J. Gussone, A. Stark, N. Schell, J. Haubrich, G. Requena, Nat. Commun. 9, 3426 (2018)
DOI PMID |
[18] |
T. Pollock, Nat. Mater. 15, 809 (2016)
DOI PMID |
[19] | L. Wang, Z. Zhang, Z. Zhao, S. Zhang, P. Pei, Acta Metall. Sin. -Engl. Lett. 36, 917 (2023) |
[20] | X. Kong, Y. Liu, M. Chen, T. Zhang, Q. Wang, F. Wang, J. Mater. Sci. Technol. 105, 142 (2022) |
[21] | Y. Cao, J. Zhu, Y. Liu, Z. Lai, Z. Nong, Phys. B 412, 45 (2013) |
[22] | H. Faraoun, H. Aourag, C. Esling, J. Seichepine, C. Coddet, Comput. Mater. Sci. 33, 184 (2005) |
[23] | W. Hu, Z. Huang, L. Cai, C. Lei, H. Zhai, S. Wo, X. Li, J. Alloys Compd. 747, 1043 (2018) |
[24] | W. Wang, H. Zhai, L. Chen, Z. Huang, G. Bei, Mater. Sci. Eng. A 616, 214 (2014) |
[25] | S. Kou, Y. Gao, W. Song, H. Zhao, Y. Guo, S. Zhang, H. Yang, Vacuum 186, 110035 (2021) |
[26] | Y. Bai, C. Cheng, J. Li, J. Luo, Z. Yang, Vacuum 182, 109785 (2020) |
[27] | W. Wang, H. Zhai, L. Chen, Z. Huang, G. Bei, P. Greil, Mater. Sci. Eng. A 670, 351 (2016) |
[28] | A. López-Ortega, R. Bayón, J. Arana, A. Arredondo, A. Igartua, Tribol. Int. 121, 341 (2018) |
[29] | J. Keyzer, G. Cacciamani, N. Dupin, P. Wollants, Calphad 33, 109 (2009) |
[30] | C. Yang, M. Zhu, X. Luo, L. Liu, W. Zhang, Y. Long, Z. Xiao, Z. Fu, L. Zhang, E. Lavernia, Scr. Mater. 139, 96 (2017) |
[31] | X. Li, C. Yang, T. Chen, Z. Fu, Y. Li, O. Ivasishin, E. Lavernia, Scr. Mater. 151, 47 (2018) |
[32] | L. Huang, L. Geng, H. Peng, Prog. Mater. Sci. 71, 93 (2015) |
[33] | Y. Zhu, X. Wu, Prog. Mater. Sci. 131, 101019 (2023) |
[34] | H. Mathieu, M. Datta, D. Landolt, J. Vac. Sci. Technol. A 3, 331 (1985) |
[35] | X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458, 198 (2018) |
[36] | T. Ge, L. Chen, P. Gu, X. Ren, X. Chen, Opt. Laser Technol. 150, 107919 (2022) |
[37] | Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue, Acta Mater. 54, 5599 (2006) |
[38] | X. Chen, Y. Li, Y. Zhu, Y. Chen, B. Yang, Electrochem. Commun. 110, 106642 (2020) |
[39] | X. Kong, W. Sun, Q. Wang, M. Chen, T. Zhang, F. Wang, J. Mater. Sci. Technol. 131, 253 (2022) |
[1] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[2] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[3] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[4] | Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58. |
[5] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[6] | Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550. |
[7] | Xingpeng Liao, Jialuo Huang, Zhilin Liu, Jingru Guo, Dajiang Zheng, Pengbo Chen, Fuyong Cao. Degradation Behavior of Zn-Cu Stents with Different Coatings in Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1564-1580. |
[8] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[9] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[10] | Weidong Zhang, Yu Cui, Li Liu, Wenquan Wang, Wenzheng Chen, Rui Li, Fuhui Wang. Corrosion Behavior of Pre-oxidized GH4169 Alloy with Solid NaCl Deposited in a Wet Oxygen Flow at 600 °C [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1249-1264. |
[11] | Xiaoxue Wang, Jingjing Guo, Zihao Zeng, Peng Zhou, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Fuhui Wang. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1161-1176. |
[12] | Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić. Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1215-1230. |
[13] | Bishan Cheng, Depeng Li, Baikang Xing, Ruiqing Hou, Pingli Jiang, Shijie Zhu, Shaokang Guan. Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1147-1160. |
[14] | Pengwei Jiang, Gang Wang, Yaosha Wu, Zhigang Zheng, Zhaoguo Qiu, Tongchun Kuang, Jibo Huang, Dechang Zeng. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 825-839. |
[15] | Hai Zhao, Yi Ding, Wei Gao, Bo Yu, Jinghui Li, Mingya Zhang. Tribological and Corrosion Properties of the CoCrAlYTaSiC-xCNTs Coatings Deposited by Laser Cladding [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 726-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||