Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (12): 2121-2135.DOI: 10.1007/s40195-024-01768-z
Previous Articles Next Articles
Yanwei Zeng1, Peng Xu1, Guoqiang Liu2, Tianguan Wang1, Bing Lei1, Zhiyuan Feng1, Ping Zhang3, Guozhe Meng1()
Received:
2024-05-08
Revised:
2024-06-18
Accepted:
2024-06-28
Online:
2024-12-10
Published:
2024-10-12
Contact:
Guozhe Meng, About author:
Yanwei Zeng and Peng Xu have contributed equally to this work.
Yanwei Zeng, Peng Xu, Guoqiang Liu, Tianguan Wang, Bing Lei, Zhiyuan Feng, Ping Zhang, Guozhe Meng. ZIF-8 Modified Ce-Sol-gel Film on Rebar for Enhancing Corrosion Resistance[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2121-2135.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | V | Fe |
---|---|---|---|---|
0.23 | 0.37 | 1.57 | 0.07 | Bal. |
Table 1 Chemical composition of HRB 400 (wt%)
C | Si | Mn | V | Fe |
---|---|---|---|---|
0.23 | 0.37 | 1.57 | 0.07 | Bal. |
Fig. 2 Schematic diagrams: a rebars with oxide scale as working electrode in SCP solution with 0.1 M NaCl; b rebars with oxide scale of embedded in mortar block as working electrode in 3.5 wt% NaCl
Component | SiO2 | MgO | Al2O3 | Fe2O3 | CaO | SO3 | Loss |
---|---|---|---|---|---|---|---|
Content (%) | 20.86 | 3.50 | 5.90 | 3.61 | 62.54 | 2.43 | 1.16 |
Table 2 Mass fraction of main chemical composition of cement
Component | SiO2 | MgO | Al2O3 | Fe2O3 | CaO | SO3 | Loss |
---|---|---|---|---|---|---|---|
Content (%) | 20.86 | 3.50 | 5.90 | 3.61 | 62.54 | 2.43 | 1.16 |
Sample | Porosity (%) |
---|---|
Ce-Sol-gel | 1.7086 |
3.2 wt% ZIF-8 @Ce-Sol-gel | 0.2537 |
Table 3 Porosity of Ce-Sol-gel and 3.2 wt% ZIF-8 @Ce-Sol-gel films on the surface of rebar
Sample | Porosity (%) |
---|---|
Ce-Sol-gel | 1.7086 |
3.2 wt% ZIF-8 @Ce-Sol-gel | 0.2537 |
Fig. 5 Electrochemical plot and fitting results of Ce-Sol-gel films with different ZIF-8 additions prepared on the surface of steel rebars in SCP solution with 0.1 M NaCl: a Nyquist plot (the illustration is the Nyquist plot of blank steel rebar); b and c Bode plots; d low-frequency impedance ( |Z|0.01 Hz) modulus diagram; e equivalent circuit diagram: e1 blank steel rebar; e2 Ce-Sol-gel film and ZIF-8 modified Ce-Sol-gel film; f according to the fitting results, the value of Rtot of 1. blank steel rebar; 2. Ce-Sol-gel; 3. 1.6 wt% ZIF-8 @Ce-Sol-gel; 4. 3.2 wt% ZIF-8 @Ce-Sol-gel; 5. 4.8 wt% ZIF-8 @Ce-Sol-gel; 6. 6.4 wt% ZIF-8 @Ce-Sol-gel; 7. 8.0 wt% ZIF-8 @Ce-Sol-gel); g comprehensive comparison of the |Z|0.01 Hz value between this work and other reported film
Samples | (Ω cm2) | Q1 (× 10-5 Ω−1 cm−2 sn) | (× 103 Ω cm2) | Q0 (× 10-6 Ω−1 cm−2 sn) | (× 103 Ω cm2) | Q2 (× 10-5 Ω−1 cm−2 sn) | (× 105 Ω cm2) | |||
---|---|---|---|---|---|---|---|---|---|---|
Blank | 5.433 | 2.228 | 0.535 | - | - | - | 2.303 | 5.960 | 0.634 | 0.230 |
Ce-Sol-gel | 5.643 | 3.354 × 10-3 | 0.782 | 5.527 | 2.640 | 0.630 | 10.030 | 1.248 | 0.651 | 3.686 |
1.6 wt% ZIF-8 @Ce-Sol-gel | 5.541 | 3.195 × 10-3 | 0.813 | 5.804 | 1.713 | 0.656 | 17.561 | 1.398 | 0.639 | 5.134 |
3.2 wt% ZIF-8 @Ce-Sol-gel | 5.860 | 3.547 × 10-3 | 0.896 | 9.377 | 1.593 | 0.714 | 32.790 | 0.159 | 0.614 | 6.867 |
4.8 wt% ZIF-8 @Ce-Sol-gel | 5.777 | 4.543 × 10-3 | 0.855 | 8.719 | 1.255 | 0.708 | 26.002 | 1.545 | 0.573 | 6.082 |
6.4 wt% ZIF-8 @Ce-Sol-gel | 5.602 | 5.728 × 10-3 | 0.806 | 4.546 | 1.902 | 0.620 | 24.096 | 1.898 | 0.598 | 4.591 |
8.0 wt% ZIF-8 @Ce-Sol-gel | 5.245 | 7.180 × 10-3 | 0.792 | 6.306 | 1.382 | 0.653 | 15.570 | 4.117 | 0.624 | 4.172 |
Table 4 Simulated parameters of EIS results of different film on the surface of HRB 400 in SCP solution with 0.1 M NaCl
Samples | (Ω cm2) | Q1 (× 10-5 Ω−1 cm−2 sn) | (× 103 Ω cm2) | Q0 (× 10-6 Ω−1 cm−2 sn) | (× 103 Ω cm2) | Q2 (× 10-5 Ω−1 cm−2 sn) | (× 105 Ω cm2) | |||
---|---|---|---|---|---|---|---|---|---|---|
Blank | 5.433 | 2.228 | 0.535 | - | - | - | 2.303 | 5.960 | 0.634 | 0.230 |
Ce-Sol-gel | 5.643 | 3.354 × 10-3 | 0.782 | 5.527 | 2.640 | 0.630 | 10.030 | 1.248 | 0.651 | 3.686 |
1.6 wt% ZIF-8 @Ce-Sol-gel | 5.541 | 3.195 × 10-3 | 0.813 | 5.804 | 1.713 | 0.656 | 17.561 | 1.398 | 0.639 | 5.134 |
3.2 wt% ZIF-8 @Ce-Sol-gel | 5.860 | 3.547 × 10-3 | 0.896 | 9.377 | 1.593 | 0.714 | 32.790 | 0.159 | 0.614 | 6.867 |
4.8 wt% ZIF-8 @Ce-Sol-gel | 5.777 | 4.543 × 10-3 | 0.855 | 8.719 | 1.255 | 0.708 | 26.002 | 1.545 | 0.573 | 6.082 |
6.4 wt% ZIF-8 @Ce-Sol-gel | 5.602 | 5.728 × 10-3 | 0.806 | 4.546 | 1.902 | 0.620 | 24.096 | 1.898 | 0.598 | 4.591 |
8.0 wt% ZIF-8 @Ce-Sol-gel | 5.245 | 7.180 × 10-3 | 0.792 | 6.306 | 1.382 | 0.653 | 15.570 | 4.117 | 0.624 | 4.172 |
Fig. 6 a Potentiodynamic polarization curve of blank steel rebar, Ce-Sol-gel films with different ZIF-8 additions on the surface of steel rebars measured in SCP solution with 0.1 M NaCl; optical photo after polarization: a1 bare steel rebars; a2 Ce-Sol-gel film on the surface of rebar; a3 3.2 wt% ZIF-8 modified Ce-Sol-gel (ZCS) film
Fig. 7 Nyquist plots of different samples immersed in SCP solution with 0.1 M NaCl during long-term (20 days): a blank samples; b CS film samples prepared; c ZCS film sample prepared; different samples embedded in the mortar block in 3.5 wt% NaCl during long-term (20 days): d blank samples; e CS film samples prepared; f ZCS film sample prepared; low-frequency impedance modulus (|Z|0.01 Hz) of different samples: g in SCP solution with 0.1 M NaCl for 20 days; h in 3.5 wt% NaCl for 20 days
Fig. 8 a Relationship between pH and isoelectric point of different oxides; b schematic mechanisms of the reaction between ZIF-8 and epoxy functional groups
Fig. 9 SEM images of different samples: a blank steel rebars; b the surface of steel rebar with Ce-Sol-gel film; c the surface of steel rebar with 3.2 wt% ZIF-8 @Ce-Sol-gel film. And cross section backscattered images and mapping images: a1-a4 blank steel rebars; b1-b4 steel rebar with Ce-Sol-gel film; c steel rebar with 3.2 wt% ZIF-8 @Ce-Sol-gel film
[1] | U. Angst, B. Elsener, C.K. Larsen, Ø. Vennesland, Cem. Concr. Res. 39, 1122 (2009) |
[2] | L. Tong, Q. Xiong, Z. Zhang, X. Chen, G. Ye, Q. Liu, Cem. Concr. Res. 176, 107351 (2024) |
[3] | V.K. Gouda, Br. Corros. J. 5, 198 (1970) |
[4] | D. Daneshvar, A. Behnood, A. Robisson, Constr. Build. Mater. 359, 129195 (2022) |
[5] | K. Doi, S. Hiromoto, T. Shinohara, K. Tsuchiya, H. Katayama, E. Akiyama, Corros. Sci. 177, 108995 (2020) |
[6] | B. Jiang, K. Doi, K. Tsuchiya, Y. Kawano, A. Kori, K. Ikushima, Corros. Sci. 163, 108304 (2020) |
[7] | C.L. Page, K.W.J. Treadaway,Nature 297, 109 (1982) |
[8] | S.E. Hussain, A. Rasheeduzzafar, A. Al-Musallam, A.S. Al-Gahtani, Cem. Concr. Res. 25, 1543 (1995) |
[9] | H. Verbruggen, H. Terryn, I. De Graeve, Constr. Build. Mater. 124, 887 (2016) |
[10] | M. Chen, H. Yuan, X. Qin, Y. Wang, H. Zheng, L. Yu, Y. Cai, Q. Liu, G. Liu, W. Li, Corros. Sci. 226, 111636 (2024) |
[11] | S. Kainuma, M. Yang, S. Ishihara, A. Kaneko, T. Yamauchi, Constr. Build. Mater. 224, 880 (2019) |
[12] | J. Wang, J. Hu, Ch. Gu, Y. Mou, J. Yu, X. Zhong, Prog. Org. Coat. 170, 107001 (2022) |
[13] | A.K. Hussain, N. Seetharamaiah, M. Pichumani, Ch. Shilpa Chakra, Prog. Org. Coat. 153,106040 (2021). |
[14] | B.S. Wyatt, Corros. Sci. 35, 1601 (1993) |
[15] | E. Vazirinasab, R. Jafari, G. Momen, Surf. Coat. Technol. 341, 40 (2018) |
[16] | R.B. Figueira,Polymer 12, 689 (2020) |
[17] | G. Cui, Z. Bi, R. Zhang, J. Liu, X. Yu, Z. Li, Chem. Eng. J. 373, 104 (2019) |
[18] | J. Meng, X. Liu, Ch. Niu, Q. Pang, J. Li, F. Liu, Z. Liu, L. Mai, Chem. Soc. Rev. 49, 3142 (2020) |
[19] | L. Jiang, Y. Dong, Y. Yuan, X. Zhou, Y. Liu, X. Meng, Chem. Eng. J. 430, 132823 (2022) |
[20] | N. Yuan, A. Zhao, K. Fang, D. Wang, X. Zhang, Cem. Concr. Compos. 127, 104406 (2022) |
[21] | D. Aliyari, M. Mahdavian, B. Ramezanzadeh, Surf. Coat. Technol. 474, 130060 (2023) |
[22] | S. Etaiw, A. Fouda, S. Amer, M. El-bendary, J. Inorg. Organomet. Polym. Mater. 21, 327 (2011) |
[23] | S. Duan, B. Dou, X. Lin, Sh. Zhao, W. Emori, J. Pan, H. Hu, H. Xiao, Colloids Surf. A Physicochem. Eng. Aspect 624, 126836 (2021) |
[24] | C. Liu, M. Mullins, S. Hawkins, M. Kotaki, H. Sue, A.C.S. Appl, Mater. Interfaces 10, 1250 (2017) |
[25] | Y. Wang, J. Hu, Y. Ma, Z. Zhang, H. Huang, J. Wei, S. Yin, Q. Yu, Constr. Build. Mater. 317, 125946 (2022) |
[26] | J. Mendez, Y. Vong, J. Pérez Bueno, Prot. Met. Phys. Chem. Surf. 58, 801 (2022). |
[27] | T. Hu, H. Shi, T. Wei, S. Fan, F. Liu, E. Han, Acta Metall. Sin. -Engl. Lett. 32, 913 (2019) |
[28] | C. Wang, R. Ma, Y. Zhou, Y. Liu, E. Daniel, X. Li, P. Wang, J. Dong, W. Ke, J. Mater. Sci. Technol. 93, 232 (2021) |
[29] | M. Liang, H. Liu, C. Wu, Y. Li, Z. Guo, V. Murugadoss, Adv. Compos. Hybrid Mater. 5, 1460 (2022) |
[30] | C.T. Nguyen, H. Buscail, R. Cueff, C. Issartel, F. Riffard, S. Perrier, O. Poble, Appl. Surf. Sci. 255, 9480 (2009) |
[31] | Z. Sims, O. Rios, D. Weiss, P. Turchi, A. Perron, J. Lee, T. Li, J. Hammons, M. Bagge-Hansen, T. Willey, K. An, Y. Chen, A. King, S. McCall, Mater. Horizons 4, 1070 (2017) |
[32] | S. Umoren, A. Madhankumar, J. Mol. Liq. 224, 72 (2016) |
[33] | H. An, Z. Xu, G. Meng, W. Li, Y. Wang, B. Liu, J. Wang, F. Wang, J. Mater. Sci. Technol. 64, 73 (2021) |
[34] | L. Gong, R. Tang, Y. Zhu, D. Chen, Int. J. Miner. Metall. Mater. 19, 800 (2012) |
[35] | Y. Zeng, L. Yang, G. Liu, Y. Guo, B. Lei, Z. Feng, H. Guo, P. Zhang, G. Meng, J. Mater. Res. Technol. 27, 4403 (2023) |
[36] | Y. Lee, M. Jang, H. Cho, H. Kwon, S. Kim, W. Ahn, Chem. Eng. J. 271, 276 (2015) |
[37] | D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, J. Am. Chem. Soc. 140, 1812 (2018) |
[38] | H. Chen, F. Wang, H. Fan, R. Hong, W. Li, Chem. Eng. J. 408, 127343 (2021) |
[39] | C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, T. Kazunobu, P. Liu, J. Wang, A.C.S. Appl, Mater. Interfaces 9, 11106 (2017) |
[40] | S. Yang, J. Wang, W. Mao, D. Zhang, Y. Guo, Y. Song, J. Wang, T. Qi, G. Li, Colloids Surf. A Physicochem. Eng. Aspect 555, 18 (2018) |
[41] | J. Balaji, S.H. Roh, T. Edison, H.Y. Jung, M. Sethuraman, J. Mol. Liq. 302, 112551 (2020) |
[42] | C. Chen, M. Yu, Z. Zhan, Y. Ge, Z. Sun, J. Liu, Corros. Sci. 212, 110955 (2023) |
[43] | E. Villa-Aleman, A. Houk, D. Dick, S. Hunyadi Murph, J. Raman Spectrosc. 51,1260 (2020). |
[44] | D.V. Ribeiro, J.C.C. Abrantes, Constr. Build. Mater. 111, 98 (2016) |
[45] |
V. Vincent, M. Orazem, Chem. Rev. 122, 11131 (2022)
DOI PMID |
[46] | X. Shi, Z. Cui, J. Li, B. Hu, Y. An, X. Wang, H. Cui, Acta Metall. Sin. -Engl. Lett. 36, 1421 (2023) |
[47] | L. Wang, M. Wang, M. Zhong, X. Li, Z. Cui, NPJ Mater. Degrad. 6, 65 (2022) |
[48] | E. McCafferty, Introduction to Corrosion Science (Springer, New York, 2010), pp. 494-501 |
[49] | Z. Feng, B. Hurley, M. Zhu, Z. Yang, J. Hwang, R. Buchjeit, J. Electrochem. Soc. 166, 520 (2019) |
[50] | K. Sharma, M. Malik, A. Hooda, K. Pandey, J. Sharma, M. Goyat, J. Mater. Eng. Perform. 32, 6329 (2023) |
[51] | S. Vanithakumari, C. Thinaharan, J. Philip, J. Sharma, M. Goyat, J. Mater. Eng. Perform. 32, 6028 (2023) |
[52] | A.E. Foroozan, R. Naderi, RSC Adv. 5,106485 (2015). |
[53] | L. Yang, X. Cao, Y. Wu, S. Chen, X. Xie, Q. Zhu, J. Wang, J. Qu, S. Chen, P. Zheng, Corros. Sci. 177, 109002 (2020) |
[54] | S. Orouji, R. Naderi, M. Mahdavian, J. Ind. Eng. Chem. 64, 245 (2018) |
[55] | S. Orouji, R. Naderi, M. Mahdavian, Colloids Surf. A Physicochem. Eng. Aspects 603, 125251 (2020) |
[56] | E. Alibakhshi, M. Akbarian, M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, Prog. Org. Coat. 123, 190 (2018) |
[57] |
R. Samiee, B. Ramezanzadeh, M. Mahdavian, E. Alibakhshi, J. Clean. Prod. 220, 340 (2019)
DOI |
[58] | C. Wang, X. Zhang, Corros. Sci. 163, 108284 (2020) |
[59] | M. Izadi, T. Shahrabi, B. Ramezanzadeh, J. Taiwan Inst. Chem. Eng. 81, 356 (2017) |
[60] | M. Taheri, R. Naderi, M. Saremi, M. Mahdavian, J. Sol-Gel Sci. Technol. 81, 154 (2017) |
[61] | M. Izadi, T. Shahrabi, I. Mohammadi, B. Ramezanzadeh, Prog. Org. Coat. 135, 135 (2019) |
[62] | S. Alinejad, R. Naderi, M. Mahdavian, J. Ind. Eng. Chem. 48, 88 (2017) |
[63] | M. Talha, Q. Wang, M. Xu, Y. Ma, Z. Li, Y. Lin, Colloid Interface. Sci. Commun. 42, 100411 (2021) |
[64] | M. Criado, I. Sobrados, J. Sanz, J. Bastidas, Surf. Coat. Technol. 258, 485 (2014) |
[65] | C. Long, L. Chen, E. Iverson, H. Castaneda, J. Grunlan, J. Mater. Sci. 57, 2988 (2022) |
[66] | T. Peng, R. Man, J.Rare Earths 27, 159 (2009) |
[67] | R. Tavangar, R. Naderi, M. Mahdavian, Prog. Org. Coat. 158, 106384 (2021) |
[68] | S. Rouzmeh, R. Naderi, M. Mahdavian, Prog. Org. Coat. 103, 156 (2017) |
[69] | G. Kong, J. Lu, S. Zhang, C. Che, H. Wu, Surf. Coat. Technol. 205, 545 (2010) |
[70] | J. Liu, J. Cai, L. Shi, J. Liu, X. Zhou, S. Mu, J. Hong, Constr. Build. Mater. 189, 95 (2018) |
[71] | M. Fedel, A. Ahniyaz, L.G. Ecco, F. Deflorian, Electrochim. Acta 131, 71 (2014) |
[72] | X. Kong, H. Liu, Z. Lu, D. Wang, Cem. Concr. Res. 67, 168 (2015) |
[73] | P. Nair, W. Luiz Vasconcelos, K. Paine, J. Calabria-Holley, Constr. Build. Mater. 291, 123065 (2021) |
[74] | H.C. Wu, Adv. Cem. Res. 26, 292 (2014) |
[75] | M. Kamali, A. Ghahremaninezhad,Materials 11, 527 (2018) |
[76] | D. Li, P. Wang, X. Chen, P. Fu, Y. Luan, X. Hu, H. Liu, M. Sun, Y. Chen, Y. Cao, L. Zheng, J. Gao, Y. Zhou, L. Zhang, X. Ma, C. Dai, C. Yang, Z. Jiang, Y. Liu, Y. Li, Nat. Mater. 21, 1173 (2022) |
[77] | F. Pedraza, B. Bouchaud, Surf. Coat. Technol. 383, 125202 (2020) |
[78] | S. Ooi, W. Cook, G. Simon, C. Such,Polymer 41, 3639 (2000) |
[79] | S. Ma, Y. Ji, Y. Dong, S. Chen, Y. Wang, S. Lv, Sci. Total Environ. 789, 147845 (2021) |
[1] | Xiaoxue Wang, Jingjing Guo, Zihao Zeng, Peng Zhou, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Fuhui Wang. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1161-1176. |
[2] | Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić. Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1215-1230. |
[3] | Bishan Cheng, Depeng Li, Baikang Xing, Ruiqing Hou, Pingli Jiang, Shijie Zhu, Shaokang Guan. Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1147-1160. |
[4] | Liwen Chen, Jianhui Jing, Lulu Zhang, Jing Li, Weipeng Chen, Limin Li, Yuan Zhao, Hua Hou, Yuhong Zhao. Corrosion Behavior of Graphene Nanosheets Reinforced Magnesium Matrix Composites in Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 525-536. |
[5] | J. Sharath Kumar, Rakesh Kumar, Rajeev Verma. Surface Modification Aspects for Improving Biomedical Properties in Implants: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 213-241. |
[6] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[7] | Yichao Guo, Tianyue Jia, Jingsha Tan, Bo Zhang, Honglei Guo, Zhiyuan Feng, Bing Lei, Ping Zhang, Guozhe Meng. Functionalized Basalt Scales by Green Method for Higher Performance of Anticorrosion Coatings [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1793-1808. |
[8] | Chao Xiang, En-Hou Han, Zhiming Zhang, Huameng Fu, Haifeng Zhang, Jianqiu Wang, Guodong Hu. Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1643-1656. |
[9] | Hongyu Zheng, Xin Gai, Yun Bai, Wentao Hou, Shujun Li, Yulin Hao, R. D. K. Misra, Rui Yang. Influence of Component Size on the Corrosion Behavior of Ti6Al4V Alloy Fabricated by Electron Beam Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 159-168. |
[10] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[11] | W.L. Zhang, W. Li, L.B. Fu, X. Peng, J. Sun, S.M. Jiang, J. Gong, C. Sun. Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na2SO4 + K2SO4 at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1409-1420. |
[12] | Chunquan Liu, Xianhua Chen, Yulong Wu, Yaobo Hu, Wei Zhang, Yusheng Zhang, Jingying Bai, Fusheng Pan. Improved Corrosion Resistance of Ultrafine-Grained Mg-Gd-Zr Alloy Fabricated by Surface Friction Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1281-1291. |
[13] | Long Chen, Xintong Lian, Zhong Xi, Tengshi Liu, Qingxiao Feng, Hualong Li, Yixin Shi, Han Dong. A Study of Rust Layer of Ultra-Thin Cast Strip Steel Containing 0.10% Sb in Simulated Industrial Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1371-1384. |
[14] | Jing Li, Xiaochen Zhang, Haibin Ma, Liangyin Xiong, Shi Liu, Qisen Ren, Zhengzheng Pang. Effect of Silicon and Aluminum Addition on Corrosion Behavior of ODS Iron-Based Alloys in Liquid Lead-Bismuth Eutectic [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 732-744. |
[15] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||