Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (12): 2136-2149.DOI: 10.1007/s40195-024-01757-2
Previous Articles Next Articles
Zhaoyang Cheng1(), Jing Liu2,3(
), Chunlei Yu1, Bolin Zhong1, Shenglin Chen4, Bing Fu1, Soran Birosca5
Received:
2024-02-23
Revised:
2024-04-09
Accepted:
2024-05-12
Online:
2024-12-10
Published:
2024-08-14
Contact:
Zhaoyang Cheng, Zhaoyang Cheng, Jing Liu, Chunlei Yu, Bolin Zhong, Shenglin Chen, Bing Fu, Soran Birosca. Balancing Magnetic and Mechanical Properties of Non-oriented Electrical Steel: Correlation Between Microstructure and Properties[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2136-2149.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 TEM images showing dislocations in the specimens annealed at different temperatures: a, b 650 °C, c, d 700 °C. b and d showing the enlarged view of the regions demarcated in a and c, respectively
Fig. 4 XRD profiles of the annealed sheets: a complete spectra, b schematic illustration of the FWHM for the (200) peak of the sheet annealed at 650 °C as an example
Annealing temperature (°C) | 650 | 700 | 750 | 800 | 850 |
---|---|---|---|---|---|
1.04 × 10−3 | 2.06 × 10−4 | 5.02 × 10−5 | 3.75 × 10−5 | 2.83 × 10−5 | |
Dislocation density (mm−2) | 2.50 × 108 | 9.91 × 106 | 5.90 × 105 | 3.29 × 105 | 1.88 × 105 |
Table 1 Values of $\varepsilon$ and the dislocation density of different specimens
Annealing temperature (°C) | 650 | 700 | 750 | 800 | 850 |
---|---|---|---|---|---|
1.04 × 10−3 | 2.06 × 10−4 | 5.02 × 10−5 | 3.75 × 10−5 | 2.83 × 10−5 | |
Dislocation density (mm−2) | 2.50 × 108 | 9.91 × 106 | 5.90 × 105 | 3.29 × 105 | 1.88 × 105 |
Fig. 5 Texture (φ2 = 45° ODF section) of the NOES sheets annealed at various annealing temperatures: a 650 °C, b 700 °C, c 750 °C, d 800 °C, e 850 °C; f the typical texture components in φ2 = 45° ODF section
Fig. 9 Schematic illustration of the texture parameter $A_{\theta } \left( g \right)$ defined as the minimum angle between the magnetization vector (${\boldsymbol{M}}$) and the crystal easy magnetization axes [100], [010], and [001]. α1 is the minimum angle in this example (α1 < α2 < α3), and $A_{\theta } \left( g \right)$ would be equal to α1
Texture components | {100} | {110} | {111} | Random |
---|---|---|---|---|
A* (°) | 22.50 | 35.60 | 38.68 | 31.88 |
Table 2 Values of $A^{*}$-parameter of different texture components (Data obtained from Ref. [31])
Texture components | {100} | {110} | {111} | Random |
---|---|---|---|---|
A* (°) | 22.50 | 35.60 | 38.68 | 31.88 |
Annealing temperature (°C) | 650 | 700 | 750 | 800 | 850 |
---|---|---|---|---|---|
29.48 | 30.38 | 30.39 | 30.67 | 31.35 |
Table 3 Values of $A_{{{\text{overall}}}}^{*}$ of the sheets annealed at different temperatures
Annealing temperature (°C) | 650 | 700 | 750 | 800 | 850 |
---|---|---|---|---|---|
29.48 | 30.38 | 30.39 | 30.67 | 31.35 |
Fig. 10 a–e Inverse pole figures of the sheets annealed at various annealing temperatures, f the values of $A^{*}$-parameter of different texture components, and g the theoretical value of $B_{5000}$ as a function of $A_{{{\text{overall}}}}^{*}$ and $\overline{d}$ for the annealed sheets together with the experimental results
[1] | T. Zhang, X. Zhang, Z. Guo, Y. Wang, C. Li, L. Lan, Acta Metall. Sin. -Engl. Lett. 26, 483 (2013) |
[2] | O. Yoshihiko, O. Tomoyuki, T. Masaaki, J.F.E. Tech, Rep. 21, 7 (2016) |
[3] | C. Zhu, Y. Bao, Y. Wang, J. Ma, G. Li, Mater. Rep. 35, 23089 (2021) |
[4] |
B. Zhang, Y. Liang, S. Wen, S. Wang, X. Shi, F. Ye, J. Lin, J. Magn. Magn. Mater. 474, 51 (2019)
DOI |
[5] | Y. Hayakawa,Tetsu Hagane 106, 683 (2020) |
[6] | I. Tanaka, H. Nitomi, K. Imanishi, K. Okamura, H. Yashiki, IEEE Trans. Magn. 49, 2997 (2013) |
[7] | I. Tanaka, H. Yashiki, IEEE Trans. Magn. 46, 290 (2010) |
[8] | D. Hou, F. Fang, Y. Wang, Y. Zhang, X. Zhang, R.D.K. Misra, G. Yuan, Mater. Sci. Eng. A 819, 141529 (2021) |
[9] | Y. Zhang, R. Song, Y. Wang, C. Cai, P. Yu, Z. Zhao, C. Hu, Mater. Sci. Eng. A 806, 140863 (2021) |
[10] | F. Fang, S. Che, D. Hou, Y. Zhang, Y. Wang, W. Zhang, G. Yuan, X. Zhang, R.D.K. Misra, G. Wang, Mater. Sci. Eng. A 831, 142284 (2022) |
[11] | B. Zhong, Z. Cheng, M. Wendler, O. Volkova, J. Liu, Mater. Des. 232, 112096 (2023) |
[12] | H. Yashiki, T. Kaneko, ISIJ Int. 30, 325 (1990) |
[13] | R.F.D.A. Cardosoa, L. Brandaoa, M.A.D. Cunhab, Mater. Res. 11, 51 (2008) |
[14] | T. Kubota, Steel Res. Int. 76, 464 (2005) |
[15] |
M. Schulte, S. Steentjes, N. Leuning, W. Bleck, K. Hameyer, J. Magn. Magn. Mater. 477, 372 (2019)
DOI |
[16] | Y. Lin, H. Wang, H. Wei, W. Zhang, S. Wang, S. Qiu, H. Lu, Y. Wang,JOM 74, 3788 (2022) |
[17] | Z. Li, S. Xie, G. Wang, H. Liu, J. Alloys Compd. 888, 161576 (2021) |
[18] | J. Huang, H. Luo, Acta Metall. Sin. -Engl. Lett. 54, 377 (2018) |
[19] | C. Yu, J. Liu, B. Fu, Z. Cheng, J. Funct. Mater. 52, 07072 (2021) |
[20] | P.M. Kibasomba, S. Dhlamini, M. Maaza, C. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Res. Phys. 9, 628 (2018) |
[21] | S. Das Bakshi, D. Sinha, S. Ghosh Chowdhury, Mater. Charact. 142, 144 (2018) |
[22] | N.S. Gonçalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Mater. Lett. 72, 36 (2012) |
[23] | N. Guo, T. Liu, B. Luan, B. Wang, Q. Liu, Mater. Res. Innov. 18, 249 (2014) |
[24] | D. Hawezy, S. Birosca, Acta Mater. 216, 117141 (2021) |
[25] | J. Qin, P. Yang, W. Mao, F. Ye, J. Magn. Magn. Mater. 393, 537 (2015) |
[26] | Z. Li, G. Wang, H. Liu, J. Alloys Compd. 935, 167984 (2023) |
[27] | L. An, Y. Wang, G. Wang, H. Liu, J. Magn. Magn. Mater. 567, 170358 (2023) |
[28] | K.M. Lee, M.Y. Huh, H.J. Lee, J.T. Park, J.S. Kim, E.J. Shin, O. Engler, J. Magn. Magn. Mater. 396, 53 (2015) |
[29] | D. Hou, F. Fang, Y. Wang, Y. Zhang, X. Zhang, D. Misra, G. Yuan, Steel Res. Int. 94, 2200645 (2023) |
[30] | M. Zhou, X. Zhang, J. Mater. Sci. Technol. 96, 126 (2022) |
[31] | H. Jiao, Y. Xu, W. Qiu, H. Xu, R.D.K. Misra, Y. Du, J. Li, G. Wang, J. Mater. Sci. Technol. 34, 2472 (2018) |
[32] | M. Mehdi, Y. He, E.J. Hilinski, N.C. Kar, A. Edrisy, J. Magn. Magn. Mater. 491, 165597 (2019) |
[33] | J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo, L.A.I. Kestens,Mater Charact 71, 49 (2012) |
[34] | Y. He, M. Mehdi, E.J. Hilinski, A. Edrisy, J. Magn. Magn. Mater. 453, 149 (2018) |
[35] | L. Kestens, S. Jacobs, Text. Stress Microstruct. 2008, 173083 (2008) |
[36] | J. Barros, J. Schneider, K. Verbeken, Y. Houbaert, J. Magn. Magn. Mater. 320, 2490 (2008) |
[37] | E. Gomes, J. Schneider, K. Verbeken, J. Barros, Y. Houbaert, IEEE T. Magn. 46, 310 (2010) |
[38] | H. Yen, P. Chen, C. Huang, J. Yang, Acta Mater. 59, 6264 (2011) |
[39] | F. Fang, S. Che, F. Wang, Y. Zhao, Y. Zhang, Y. Wang, G. Cao, G. Yuan, R.D.K. Misra, G. Wang, J. Magn. Magn. Mater. 563, 169791 (2022) |
[40] | D. Hou, J. Wang, F. Fang, Y. Wang, Y. Zhang, X. Zhang, R.D.K. Misra, G. Yuan, J. Magn. Magn. Mater. 565, 170184 (2023) |
[41] | Y. Wang, X. Zhang, Z. He, G. Zu, G. Ji, J. Duan, R.D.K. Misra, Mater. Sci. Eng. A 703, 340 (2017) |
[42] | Y. Xu, G. Zu, J. Liang, Y. Wang, Y. Han, W. Zhu, Y. Zhao, X. Ran, J. Mater. Sci. 58, 1783 (2023) |
[43] | Q. He, C. Zhu, Y. Liu, W. Yan, X. Wan, G. Li, J. Mater. Res. Technol. 23, 4454 (2023) |
[44] | B. Zhang, Y. Liang, C. Han, Z. Wang, J. Zhang, G. Zhou, B. Liu, F. Ye, J. Lin, Mater. Lett. 296, 129917 (2021) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[3] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[4] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[5] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[6] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[7] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[8] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[9] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[10] | Qian Wang, Peng Yu, Haoran Lin, Chongzhi Guo, Xiaoqiang Hu. Joined AZ31B Magnesium Alloys with Ag Interlayer by Ultrasonic-Induced Transient Liquid Phase Bonding in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1177-1185. |
[11] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[12] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
[13] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[14] | Sen Wang, Hucheng Pan, Caixia Jiang, Zhihao Zeng, Zhen Pan, Weineng Tang, Chubin Yang, Yuping Ren, Gaowu Qin. Microstructure and Mechanical Property of the Large Cross-Sectioned Mg-Gd-Y-Zn-Zr Alloy Produced by Small Extrusion Ratio [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 999-1006. |
[15] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||