Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (12): 2057-2067.DOI: 10.1007/s40195-024-01761-6
Previous Articles Next Articles
Jiafen Song1, Wei Guo1,2(), Shiming Xu1, Ding Hao1, Yajie Du1, Jiangtao Xiong1,2(
), Jinglong Li1,2
Received:
2024-04-16
Revised:
2024-06-16
Accepted:
2024-07-12
Online:
2024-12-10
Published:
2024-09-13
Contact:
Wei Guo, Jiafen Song, Wei Guo, Shiming Xu, Ding Hao, Yajie Du, Jiangtao Xiong, Jinglong Li. Interfacial Microstructure Evolution and Mechanical Properties of TC4/MgAl2O4 Joints Brazed with Ti-Zr-Cu-Ni Filler Metal[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2057-2067.
Add to citation manager EndNote|Ris|BibTeX
Ti | Al | V |
---|---|---|
85.75 | 12.09 | 2.16 |
Table 1 Chemical composition of TC4 alloy (at.%)
Ti | Al | V |
---|---|---|
85.75 | 12.09 | 2.16 |
Fig. 3 Typical microstructure of the joint brazed at 925 °C for 10 min: a, b microstructure of brazed joints, c elemental distribution across the joint, d-f different magnification of brazed joints and b1-b8 the corresponding elemental distribution of Ti, Al, V, O, Mg, Ni, Cu and Nb
Phase | Ti | Al | V | Mg | O | Zr | Cu | Ni | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 86.8 | 10.4 | 2.43 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | α-Ti |
B | 76.0 | 6.1 | 1.5 | 0.1 | 0.0 | 8.7 | 4.4 | 3.5 | α-Ti |
C | 43.3 | 5.0 | 1.9 | 0.2 | 0.0 | 21.6 | 16.0 | 12.0 | (Ti Zr)2Cu Ni |
D | 38.5 | 6.3 | 1.3 | 0.1 | 0.0 | 22.9 | 15.8 | 14.9 | (Ti Zr)2Cu Ni |
Table 2 Chemical composition of the phases marked in Fig. 3b (at.%)
Phase | Ti | Al | V | Mg | O | Zr | Cu | Ni | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 86.8 | 10.4 | 2.43 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | α-Ti |
B | 76.0 | 6.1 | 1.5 | 0.1 | 0.0 | 8.7 | 4.4 | 3.5 | α-Ti |
C | 43.3 | 5.0 | 1.9 | 0.2 | 0.0 | 21.6 | 16.0 | 12.0 | (Ti Zr)2Cu Ni |
D | 38.5 | 6.3 | 1.3 | 0.1 | 0.0 | 22.9 | 15.8 | 14.9 | (Ti Zr)2Cu Ni |
Fig. 4 Crystal structure and composition of phases at bonding interface: a HAADF pattern of bonding interface, a1-a8 the corresponding elements mapping of Ti, Zr, Cu, Ni, V, Mg, Al, and O, respectively, b, c crystal structure of phase A and B deduced by a SAED patterns, d HRTEM image of the phase interface
Phase | Ti | Zr | Cu | Ni | Al | V | Mg | O | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 66.03 | 4.74 | 3.85 | 3.53 | 15.53 | 2.85 | 1.45 | 2.02 | α-Ti |
B | 32.73 | 22.96 | 15.48 | 12.12 | 7.78 | 4.15 | 1.49 | 3.24 | (Ti, Zr)2(Cu, Ni) |
Table 3 Composition of different phases in the brazed joint (at.%)
Phase | Ti | Zr | Cu | Ni | Al | V | Mg | O | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 66.03 | 4.74 | 3.85 | 3.53 | 15.53 | 2.85 | 1.45 | 2.02 | α-Ti |
B | 32.73 | 22.96 | 15.48 | 12.12 | 7.78 | 4.15 | 1.49 | 3.24 | (Ti, Zr)2(Cu, Ni) |
Fig. 5 Crystal structure and composition of phases at bonding interface: a, d HAADF pattern of bonding interface, a1-a8, d1-d8 the corresponding elements mapping of Ti, Zr, Cu, Ni, V, Mg, Al, and O, respectively, b, c and f crystal structure of phase deduced by a SAED patterns, e HRTEM image of the phase C
Location | Ti | Zr | Cu | Ni | Al | V | Mg | O | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 0.02 | 0.14 | 6.07 | 0.02 | 26.12 | 0.04 | 13.99 | 53.53 | MgAl2O4 |
B | 25.75 | 2.62 | 11.50 | 2.23 | 9.14 | 4.10 | 15.53 | 29.13 | TiO |
C | 24.55 | 7.53 | 33.71 | 8.00 | 10.29 | 1.02 | 0.26 | 14.60 | Metallic glass |
Table 4 Composition of different phases in the brazed joint (at.%)
Location | Ti | Zr | Cu | Ni | Al | V | Mg | O | Possible phase |
---|---|---|---|---|---|---|---|---|---|
A | 0.02 | 0.14 | 6.07 | 0.02 | 26.12 | 0.04 | 13.99 | 53.53 | MgAl2O4 |
B | 25.75 | 2.62 | 11.50 | 2.23 | 9.14 | 4.10 | 15.53 | 29.13 | TiO |
C | 24.55 | 7.53 | 33.71 | 8.00 | 10.29 | 1.02 | 0.26 | 14.60 | Metallic glass |
Fig. 7 Schematic diagram of brazing interface formation: a melting of filler metals, b isothermal solidification process, c, d cooling from different temperature, and e schematic phase diagram of Ti (Zr)-Cu (Ni)
Fig. 8 Microhardness and modulus of joints with different brazing temperature: a microhardness distribution and b modulus of the joints brazed at 900 and 975 °C
[1] | M. Rubat du Merac, H.J. Kleebe, M.M. Müller, I.E. Reimanis, J. Am. Ceram. Soc. 96, 3341 (2013) |
[2] | S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, Prog. Solid State Chem. 41, 20 (2013) |
[3] | R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996) |
[4] | W.M. Kriven, H.T. Lin,ed. (John Wiley & Sons, 2009), pp. 441-446. |
[5] | Q. Sun, L.D. Yang, W.C. Yang, H.J. Ji, M.Y. Li, Y.F. Li, J. Eur. Ceram. Soc. 42, 5953 (2022) |
[6] | M. Rubat du Merac, I.E. Reimanis, H.J. Kleebe, J. Am. Ceram. Soc. 98, 2130 (2015) |
[7] | D. Liu, K.H. Zhao, Y.Y. Song, L. Zhang, X.G. Song, W.M. Long, Mater. Charact. 157, 109890 (2019) |
[8] | S. Vazirian, A. Farzadi, A. Solouk, Mater. Today Commun. 32, 103981 (2022) |
[9] | R. Asthana, M. Singh, Int. J. Appl. Ceram. Technol. 11, 502 (2014) |
[10] | J.D. Jarman, W.G. Fahrenholtz, G.E. Hilmas, J.L. Watts, T. Huang, J. Eur. Ceram. Soc. 42, 5195 (2022) |
[11] | N.R.J. Hynes, P.S. Velu, R. Kumar, M.K. Raja, Ceram. Int. 43, 7762 (2017) |
[12] | S. Li, Z.Y. Liu, Y.Q. Xia, X.X. Wang, P. He, Y.T. Jiu, L.H. Jia, W.M. Long, J. Manuf. Process. 70, 484 (2021) |
[13] |
W. Wang, Y.P. Liu, G. Wang, C.W. Tan, W. Cao, J. Mater. Res. Technol. 9, 8627 (2020)
DOI |
[14] | Y.H. Zhou, D. Liu, H.W. Niu, X.G. Song, X.D. Yang, J.C. Feng, Mater. Des. 93, 347 (2016) |
[15] | E. Ganjeh, H. Sarkhosh, Mater. Sci. Eng. A 559, 119 (2013) |
[16] | D.Y. Fan, J.H. Huang, B. Cui, J. Yang, S.H. Chen, X.K. Zhao, J. Mater. Eng. Perform. 26, 1114 (2017) |
[17] | B. Cui, J.H. Huang, C. Cai, S.H. Chen, X.K. Zhao, Compos. Sci. Technol. 97, 19 (2014) |
[18] | Y. Wang, M. Jiao, Z.W. Yang, D.P. Wang, Y.C. Liu, Arch. Civ. Mech. Eng. 18, 546 (2018) |
[19] | M.K. Lee, J.G. Lee, Mater. Charact. 81, 19 (2013) |
[20] | H. Okamoto, T.B. Massalski (eds.), ASM International (OH, USA, 1990), p.12 |
[21] | M.K. Lee, K.H. Kim, J.G. Lee, C.K. Rhee, Mater. Charact. 80, 98 (2013) |
[22] | B. Huneau, P.F. Rogl, K.J. Zeng, R. Schmid-Fetzer, M. Bohn, J. Bauer,Intermetallics 7, 1337 (1999) |
[23] |
H. Donthula, B. Vishwanadh, T. Alam, T. Borkar, R.J. Contieri, R. Caram, R. Banerjee, R. Tewari, G.K. Dey, S. Banerjee, Acta Mater. 168, 63 (2019)
DOI |
[24] | I. Thibon, D. Ansel, T. Gloriant, J. Alloys Compd. 470, 127 (2009) |
[25] | Q.W. Qiu, Y. Wang, Z.W. Yang, X. Hu, D.P. Wang, Mater. Des. 90, 650 (2016) |
[26] | G. Meyrick, G.W. Powell, Annu. Rev. Mater. Sci. 3, 327 (1973) |
[27] | Y. Peng, S.W. Li, F. Jin, Y.P. Chen, W. Guo, J.T. Xiong, J.L. Li, Acta Metall. Sin. -Engl. Lett. 36, 2031 (2023) |
[28] | C. Wu, H. Yang, H.W. Li, Acta Metall. Sin. -Engl. Lett. 26, 533 (2013) |
[29] | W.L. Johnson, Mater. Sci. Forum 225-227, 35 (1996) |
[30] | A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 36, 391 (1995) |
[31] | A. Inoue, Mater. Trans. JIM 36, 866 (1995) |
[32] | J.W. Yeh,JOM 65, 1759 (2013) |
[33] | Z.K. Dehkordi, M. Malekan, M. Nili-Ahmadabadi, J. Non-Cryst.Solids 576, 121265 (2022) |
[34] | Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008) |
[35] | Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016) |
[36] | D.B. Miracle, Acta Mater. 54, 4317 (2006) |
[37] | A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[3] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[4] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[5] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[6] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[7] | Qian Wang, Peng Yu, Haoran Lin, Chongzhi Guo, Xiaoqiang Hu. Joined AZ31B Magnesium Alloys with Ag Interlayer by Ultrasonic-Induced Transient Liquid Phase Bonding in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1177-1185. |
[8] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[9] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
[10] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[11] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
[12] | Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo. Enhanced Strength-Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 793-807. |
[13] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[14] | Rashad A. Al-Hammadi, Rui Zhang, Chuanyong Cui, Zijian Zhou, Yizhou Zhou. Revealing the Void Formation Mechanism during Superplastic Deformation of a Fine-Grained Ni-Co-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 915-920. |
[15] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||