Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 145-158.DOI: 10.1007/s40195-023-01576-x
Previous Articles Next Articles
Yan Wen1,2,3, Xuan Sun1,2, Jian Zhou1,2, Bingliang Liu1,2, Haojie Guo4, Yuxin Li4, Fei Yin1,2, Liqiang Wang5, Lechun Xie1,2(), Lin Hua1,2(
)
Received:
2023-03-13
Revised:
2023-04-27
Accepted:
2023-05-11
Online:
2024-01-10
Published:
2023-07-08
Contact:
Lechun Xie, Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158.
Add to citation manager EndNote|Ris|BibTeX
Ti | Al | Mo | Zr | Si |
---|---|---|---|---|
Bal. | 6.68 | 3.70 | 1.64 | 0.25 |
Table 1 Chemical composition of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si powder (wt%)
Ti | Al | Mo | Zr | Si |
---|---|---|---|---|
Bal. | 6.68 | 3.70 | 1.64 | 0.25 |
Fig. 1 a Morphology of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si powder; b particle size distribution; c LMD scanning pattern; d the selected position in LMD specimen for tensile experiment; e the dimension of specimen for EST and tensile experiment; f the photographs of an as-built specimen and a tensile specimen
Specimen number | Laser power (w) | Spot diameter (mm) | Powder feeding speed (g/h) | Layer thickness (mm) | Scanning speed (mm/min) | Thin-wall specimen size (mm3) | Current density during EST (A/mm2) | EST time (s) |
---|---|---|---|---|---|---|---|---|
EST0 | 800 | 3 | 400 | 0.75 | 450 | 70 × 3 × 15 | 72 | 0 |
EST1 | 0.4 | |||||||
EST2 | 0.6 | |||||||
EST3 | 0.8 |
Table 2 LMD process parameters and EST parameters of specimens
Specimen number | Laser power (w) | Spot diameter (mm) | Powder feeding speed (g/h) | Layer thickness (mm) | Scanning speed (mm/min) | Thin-wall specimen size (mm3) | Current density during EST (A/mm2) | EST time (s) |
---|---|---|---|---|---|---|---|---|
EST0 | 800 | 3 | 400 | 0.75 | 450 | 70 × 3 × 15 | 72 | 0 |
EST1 | 0.4 | |||||||
EST2 | 0.6 | |||||||
EST3 | 0.8 |
Fig. 2 a Schematic diagram of EST; b the waveform and frequency of pulse current during EST; c the temperature curve and fitting curve of specimens during EST under three parameters; d the diagram of tensile specimen; e OM and SEM observation area in middle (M) areas; f XRD test area; g hardness measurement area in the upper (U), middle (M), and bottle (B) areas of specimen. Where the test areas in figures e, f and g are located in the gray area marked in d
Fig. 3 OM micrographs of specimens before and after EST: a EST0; b EST1; c EST2; d EST3. HAB is marked by two yellow dotted lines, and ILB is marked by two blue dotted lines
Fig. 4 SEM images of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si before and after EST: a EST0; b EST1; c EST2; d EST3. EG means primary β equiaxed grain, CG means primary β columnar grain
Fig. 5 Magnified morphologies of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si before and after EST: a EST0; b EST1; c EST2; d EST3. αCGB means the continuous grain boundaries with α phase, αGB means the grain boundaries of α phase, αcolony means the α colony, βresidual means the residual β phase, αs means the secondary acicular α phase
Fig. 6 Microstructure morphologies of HAB before and after EST: a EST0; b EST1; c EST2; d EST3. a1-d1 showing the selected areas outside HAB; a2-d2 showing the selected internal areas of HAB. The yellow dotted box in c2, d1 and d2 is the residual β phase area, from which the αs phase is precipitated
Fig. 7 XRD patterns of LMD specimens before and after EST: a XRD image from 30° to 90°; b the magnified diffraction angle from 34° to 42°; c the magnified diffraction angle range of 34.5°-36.5°, 38°-39° and 40°-41°, which are corresponding to the (100) (002) and (101) peaks
Fig. 9 Fracture morphology of specimens before and after EST: a EST0; b EST1; c EST2; d EST3, a1-d1 showing the magnified images of selected area in a-d, respectively
Fig. 10 Schematic diagram of effects of EST on grain boundary, colony and αlath: a microstructure of specimen before EST; b microstructure variation of αlath under thermal effect; c microstructure variation of αlath under athermal effect, causing by the non-uniform current; d microstructure variation under EST with 0.4 s; e microstructure variation under EST with 0.6 s; f microstructure variation under EST with 0.8 s. αCGB means the continuous grain boundary of α phase, αGB means the grain boundary of α phase, αcolony means the α colony, αlath means the α lath, αs means the secondary acicular α phase
[1] | G. Qiu, Y. Guo, Int. J. Miner. Metall. Mater. 29, 599 (2022) |
[2] |
Y.L. Hao, S.J. Li, R. Yang, Rare. Met. 35, 661 (2016)
DOI URL |
[3] |
Y.W. Cui, L.Y. Chen, P. Qin, R. Li, Q. Zang, J. Peng, L. Zhang, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 203, 110333 (2022)
DOI URL |
[4] |
P. Qin, L.Y. Chen, Y.J. Liu, Z. Jia, S.X. Liang, C.H. Zhao, H.Q. Sun, L.C. Zhang, Corros. Sci. 191, 109728 (2021)
DOI URL |
[5] |
C. Liu, L. Xie, D. Qian, L. Hua, L. Wang, L.C. Zhang, Mater. Des. 198, 109322 (2021)
DOI URL |
[6] |
D.L. Ouyang, H.M. Du, X. Cui, S.Q. Lu, X.J. Dong, Rare Met. 38, 233 (2019)
DOI |
[7] | D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576, 91 (2019) |
[8] |
L.Y. Chen, S.X. Liang, Y. Liu, L.C. Zhang, Mater. Sci. Eng. R Rep. 146, 100648 (2021)
DOI URL |
[9] | Y. Wang, R. Chen, X. Cheng, Y. Zhu, J. Zhang, H. Wang, J. Mater. Sci. Technol. 35, 403 (2019) |
[10] |
Y. Zhu, D. Liu, X. Tian, H. Tang, H. Wang, Mater. Des. 56, 445 (2014)
DOI URL |
[11] |
A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.S. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna, A.A. Zadpoor, J. Alloy. Compd. 804, 163 (2019)
DOI URL |
[12] | J. Yang, Z.M. Song, L.M. Lei, G.P. Zhang, Mater. Sci. Eng. A 617, 84 (2014) |
[13] | K. Wang, H. Li, Y. Zhou, J. Wang, R. Xin, Q. Liu, Acta Metall. Sin. -Engl. Lett. 36, 353 (2023) |
[14] | H.S. Ren, X.J. Tian, D. Liu, J. Liu, H.M. Wang Trans. Nonferrous Met. Soc. China 25, 1856 (2015) |
[15] | Z. Liu, P. Liu, L. Wang, Y. Lu, X. Lu, Z.X. Qin, H.M. Wang, Mater. Sci. Eng. A 716, 140 (2018) |
[16] |
Y. Zhu, X. Tian, J. Li, H. Wang, Mater. Des. 67, 538 (2015)
DOI URL |
[17] |
X. Zong, Z. Li, J. Li, X. Cheng, R. Chen, C.W. Tan, H.M. Wang, J. Alloy. Compd. 781, 47 (2019)
DOI URL |
[18] |
X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li, J. Mater. Sci. Technol. 68, 112 (2021)
DOI |
[19] | X. Luo, T. Song, F. Wang, H. Lu, L. Kang, H. Ma, D. Li, A. Gebert, C. Yang, Adv. Powder Mater. 2, 100118 (2023) |
[20] | D. Ben, H. Yang, J. Gao, B. Yang, Y.a. Dong, X. Liu, X. Wang, Q. Duan, P. Zhang, Z. Zhang, Materials 15, 7103 (2022). |
[21] |
M. Lee, J. Yu, M.H. Bae, J.W. Won, T. Lee, J. Mater. Res. Technol. 15, 5706 (2021)
DOI URL |
[22] |
S. Qin, X. Ba, X. Zhang, Scr. Mater. 178, 24 (2020)
DOI URL |
[23] |
W. Wu, Y. Song, Z. Wang, S. Ning, L. Hua, J. Mater. Sci. 55, 2245 (2020)
DOI |
[24] |
C. Liu, F. Yin, L. Xie, D. Qian, Y. Song, W. Wu, L. Wang, L.C. Zhang, L. Hua, J. Alloy. Compd. 904, 163969 (2022)
DOI URL |
[25] |
H. Guo, P. Liu, X. Qin, Y. Song, D. Qian, L. Xie, L. Wang, L.C. Zhang, L. Hua, Mater. Des. 212, 110286 (2021)
DOI URL |
[26] |
Y. Wen, P. Liu, H. Guo, L. Tian, L. Wang, Z. Wang, L. Hua, L. Xie, J. Alloy. Compd. 936, 168187 (2023)
DOI URL |
[27] |
Q. Sun, L. Hua, Scr. Mater. 200, 113828 (2021)
DOI URL |
[28] | L. Xie, H. Guo, Y. Song, L. Hua, L. Wang, L.C. Zhang, Metall. Mater. Trans. A 52, 457 (2021) |
[29] |
L. Gonzalez-Fernandez, E. Risueno, R.B. Perez-Saez, M.J. Tello, J. Alloy. Compd. 541, 144 (2012)
DOI URL |
[30] |
L. Xie, C. Liu, Y. Song, H. Guo, Z. Wang, L. Hua, L. Wang, L.C. Zhang, J. Mater. Res. Technol. 9, 2455 (2020)
DOI URL |
[31] |
Y. Zhu, X. Tian, J. Li, H. Wang, J. Alloy. Compd. 616, 468 (2014)
DOI URL |
[32] | Y.Y. Zhu, H.B. Tang, Z. Li, C. Xu, B. He, J. Alloy. Compd. 777, 712 (2019) |
[33] |
T. Wang, Y. Zhu, S. Zhang, H. Tang, H. Wang, J. Alloy. Compd. 632, 505 (2015)
DOI URL |
[34] |
C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao, J. Mater. Sci. Technol. 75, 174 (2021)
DOI |
[35] |
Y. Song, Z. Wang, Y. Yu, W. Wu, Z. Wang, J. Lu, Q. Sun, L. Xie, L. Hua, Mater. Des. 221, 110902 (2022)
DOI URL |
[36] | C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Mater. Sci. Eng. A 586, 323 (2013) |
[37] | H. Shao, Y. Zhao, P. Ge, W. Zeng, Mater. Sci. Eng. A 559, 515 (2013) |
[38] |
X.D. Li, C.Y. Qiu, Y.T. Liu, H.F. Wang, D.D. Zheng, Y.Y. Zhu, S.Q. Zhang, J. Iron Steel Res. Int. 27, 1476 (2020)
DOI |
[39] | Y.J. Liang, D. Liu, H.M. Wang, Scr. Mater. 74 80 (2014) |
[40] | S. Huang, Y. Ma, S. Zhang, S.S. Youssef, J. Qiu, H. Wang, B.Y. Zong, J. Lei, R. Yang, Metall. Mater. Trans. A 49, 6390 (2018) |
[41] |
Y. Hao, Y. Huang, K. Zhao, C. Qi, Y. Du, Opt. Laser Technol. 150, 107983 (2022)
DOI URL |
[42] | S. Xiang, X. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 281 (2020) |
[43] |
B. Ma, Y. Zhao, H. Bai, J. Ma, J. Zhang, X. Xu, Mater. Des. 49, 168 (2013)
DOI URL |
[44] | H. Conrad, Mater. Sci. Eng. A 287, 227 (2000) |
[1] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[2] | Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144. |
[3] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[4] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[5] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[6] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[7] | Qiang Li, Xing-Ran Li, Bai-Xin Dong, Xiao-Long Zhang, Shi-Li Shu, Feng Qiu, Lai-Chang Zhang, Zhi-Hui Zhang. Metallurgy and Solidification Microstructure Control of Fusion-Based Additive Manufacturing Fabricated Metallic Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 29-53. |
[8] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[9] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[10] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[11] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[12] | Zhonghua Jiang, Pei Wang, Dianzhong Li. Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1523-1535. |
[13] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[14] | Xiao-Yang Yi, Wei Liu, Yun-Fei Wang, Bo-Wen Huang, Xin-Jian Cao, Kui-Shan Sun, Xiao Liu, Xiang-Long Meng, Zhi-Yong Gao, Hai-Zhen Wang. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1247-1260. |
[15] | Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||