Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1502-1510.DOI: 10.1007/s40195-023-01565-0
Previous Articles Next Articles
Ping Huang1,2, Yutong Shi2,3, Wei Zhang1(), Suode Zhang2, Yinglei Ren1, Keqiang Qiu1(
), Jianqiang Wang2(
)
Received:
2023-02-12
Revised:
2023-03-19
Accepted:
2023-03-30
Online:
2023-09-10
Published:
2023-08-25
Contact:
Wei Zhang,zwei@sut.edu.cn;Keqiang Qiu,kqqiu@sut.edu.cn;Jianqiang Wang,jqwang@imr.ac.cn
Ping Huang, Yutong Shi, Wei Zhang, Suode Zhang, Yinglei Ren, Keqiang Qiu, Jianqiang Wang. Phase Evolution and Glass Formation in an Fe-Based Alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1502-1510.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Diagram of the wedge-shaped casting apparatus consisting of a melting and a temperature measurement. The thermocouples are embedded on the axis of the copper mold cavity at 3, 10 and 20 mm away from the tip of the wedge
Fig. 2 Measured (dotted lines) and calculated (solid lines) cooling temperature curves during wedge-casting. The distances indicated in the legend are measured along the z-axis from the tip of the wedge: 3 mm (black), 10 mm (red), and 20 mm (blue). To reflect the temperature change in the initial stage of solidification, the inset shows a magnified view of the first 0.4 s
Fig. 3 Thermogram of the Fe-based glass-forming alloy ingot after 0.0259 s of cooling. The imposed lines indicate the range of possible isothermal contours during cooling based on the appearance of the glass-crystalline transition region. The cooling rates corresponding to the isothermal contours line are shown in the thermogram. The isothermal contours at the tip of the wedge specimen are enlarged and placed at the bottom right
Fig. 4 Microstructural features on the cross section a and corresponding X-ray spectra at different locations b of the wedge-shaped ingot. The microstructural features of the ingot are congruent to the contrast visible in the thermograms (Fig. 3), and a transition from amorphous to polycrystalline is evident. The X-ray spectra refer to the regions (position 1, 3 mm away from the tip of the wedge; position 2, 10 mm away from the tip of the wedge; position 3, 20 mm away from the tip of the wedge) are described
Fig. 5 Microstructure images and corresponding EDS mapping results of the wedge-shaped ingot observed at different positions: SEM image a at the position of 10 mm away from the tip of the ingot and the corresponding EDS mapping results b-e in the red box; SEM image f at the position of 20 mm away from the tip of the ingot and the corresponding EDS mapping results g-j in the yellow box
Fig. 6 a Isothermal DSC traces of Fe-based ribbons annealed at various temperatures between Tg and Tx, Tanneal = 798 K, 803 K, 808 K, 813 K, 823 K and 828 K, respectively. b Fit of the crystallization onset time by rearranging Eq. (7) to get B (K) and T0 (K) for a given Γ. c TTT curves for a given set of C (KJ2 /m6)
Phases | Tm (K) | Ωij (kJ/mol) | di (Å) | dj (Å) | Rc (K/s) |
---|---|---|---|---|---|
Fe2P | 1643 | − 160 | 2.54 | 2.60 | 6.05 × 105 |
{Fe, Ni} | 1728 | − 8 | 2.54 | 2.48 | 4.34 × 105 |
α-Fe | 1811 | 0 | 2.54 | 1.40 | 4.55 × 105 |
M23B6 | 1373 | − 100 | 2.51 | 1.90 | 1.96 × 105 |
Table 1 Relevant parameters [10] for Rc of crystalline phases in Fe-based metallic glass calculated by Eq. (9)
Phases | Tm (K) | Ωij (kJ/mol) | di (Å) | dj (Å) | Rc (K/s) |
---|---|---|---|---|---|
Fe2P | 1643 | − 160 | 2.54 | 2.60 | 6.05 × 105 |
{Fe, Ni} | 1728 | − 8 | 2.54 | 2.48 | 4.34 × 105 |
α-Fe | 1811 | 0 | 2.54 | 1.40 | 4.55 × 105 |
M23B6 | 1373 | − 100 | 2.51 | 1.90 | 1.96 × 105 |
Fig. 8 a DSC measurement of the Fe-based amorphous alloy ribbon at a heating rate of 20 K/min. Three distinct crystallization events are apparent and the onset crystallization temperature Tx are 835 K, 898 K and 995 K, respectively. The total crystallization heat is determined to be − 260.8 J/g. b XRD patterns of Fe-based alloy ribbons annealed at the temperature of 773 K, 873 K, 923 K and 1023 K and the time of 2 h
Fig. 9 Summary of cooling curves and TTT diagrams. Region A (gray) is the experimental and calculated isothermal TTT curve of the Fe-based alloy; Region B (blue) is the calculated TTT curves of the four crystal phases; Region C (yellow) is the cooling curves measured at different locations during solidification. The cooling curve at 3 mm leading to amorphous phase during casting does not intersect the TTT curves, but the cooling curves at 10 mm and 20 mm cut the TTT diagrams and in good agreement with the XRD data; Region D (orange) is the phase precipitation sequence upon heating at a rate of 20 K/min
[1] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)
DOI URL |
[2] | S.V. Madge, Metals 5, 1279 (2015) |
[3] | Y. Wei, X. Lei, L.S. Huo, W.H. Wang, A.L. Greer, Mater. Sci. Eng. A 560, 510 (2013) |
[4] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Prog. Mater. Sci. 103, 235 (2019)
DOI |
[5] | A. Hirata, Y. Hirotsu, Materials 3, 5263 (2010) |
[6] | A. Hirata, Y. Hirotsu, K. Amiya, A. Inoue, Phys. Rev. B 79, 020205 (2009) |
[7] | A. Hirata, Y. Hirotsu, K. Amiya, A. Inoue, J. Alloy. Compd. 504S, S186 (2010) |
[8] | A. Hirata, Y. Hirotsu, K. Amiya, A. Inoue, Phys. Rev. B 78, 144205 (2008) |
[9] |
J. Schroers, Adv. Mater. 22, 1566 (2010)
DOI URL |
[10] | A. Takeuchi, A. Inoue, Mater. Sci. Eng. A 304-306, 446 (2001) |
[11] |
Y.J. Kim, R. Busch, W.L. Johnson, A.J. Rulison, W.K. Rhim, Appl. Phys. Lett. 68, 1057 (1996)
DOI URL |
[12] |
J. Schroers, R. Busch, A. Masuhr, W.L. Johnson, Appl. Phys. Lett. 74, 2806 (1999)
DOI URL |
[13] |
J. Schroers, W.L. Johnson, R. Busch, Appl. Phys. Lett. 77, 1158 (2000)
DOI URL |
[14] | J. Schroers, A. Masuhr, W.L. Johnson, R. Busch, Phys. Rev. B 60, 11855 (1999) |
[15] |
C.M. Grigoriana, T.J. Rupert, Acta Mater. 206, 116650 (2021)
DOI URL |
[16] |
F.X. Bai, J.H. Yao, Y.X. Wang, J. Pan, Y. Li, Scr. Mater. 132, 58 (2017)
DOI URL |
[17] |
F. Haag, S. Geisel, G. Kurtuldu, J.F. Löffler, Acta Mater. 151, 416 (2018)
DOI URL |
[18] |
J.H. Perepezko, K. Hildal, Philos. Mag. 86, 3681 (2006)
DOI URL |
[19] | J.H. Perepezko, C. Santhaweesuk, J.Q. Wang, S.D. Imhoff, J. Alloy. Compd. 615, S192 (2014) |
[20] |
A. Kuball, M. Stolpe, R. Busch, J. Alloy. Compd. 737, 398 (2018)
DOI URL |
[21] | A.D. Abdullin, Metallurgist 61, 433 (2017) |
[22] | K. Hildal, N. Sekido, J.H. Perepezko, Intermetallics 14, 898 (2006) |
[23] |
S. Jeon, M.P. Sansoucie, D.M. Matson, J. Chem. Thermodyn. 138, 51 (2019)
DOI URL |
[24] |
G.N. Yang, Y. Shao, K.F. Yao, S.Q. Chen, AIP Adv. 5, 117111 (2015)
DOI URL |
[25] |
C.M. Grigorian, T.J. Rupert, Acta Mater. 206, 116650 (2021)
DOI URL |
[26] |
H.J. Fecht, J.H. Perepezko, M.C. Lee, W.L. Johnson, J. Appl. Phys. 68, 4494 (1990)
DOI URL |
[27] | W.J. Boettinger, J.H. Perepezko, ed. by H.H. Liebermann (Marcel Dekker Inc., Parsippany, New Jersey, 1993), p. 17. |
[28] |
L. Battezzati, A.L. Greer, Acta Met. 37, 1791 (1989)
DOI URL |
[29] |
C.A. Angell, K.L. Ngai, G.B. Mckenna, P.F. Mcmillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)
DOI URL |
[30] | A. Takeuchi, A. Inoue, Mater. Sci. Eng. A 375-377, 449 (2004) |
[31] | C. Santhaweesuk, Dissertation (University of Wisconsin-Madison, 2013) |
[32] |
F.A. Javid, N. Mattern, M. Samadi Khoshkhoo, M. Stoica, S. Pauly, J. Eckert, J. Alloy. Compd. 590, 428 (2014)
DOI URL |
[33] |
I.S. Golovin, A.K. Mohamed, I.A. Bobrikov, A.M. Balagurov, Mater. Lett. 263, 127257 (2020)
DOI URL |
[1] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[2] | Shouqing Zhang, Xiaofeng Hu, Haichang Jiang, Lijian Rong. Effect of Cooling Rate on Microstructure and Effective Grain Size for a Ni-Cr-Mo-B High-Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1862-1872. |
[3] | Sinan Liu, Jiacheng Ge, Huiqaing Ying, Chenyu Lu, Dong Ma, Xun-Li Wang, Xiaobing Zuo, Yang Ren, Tao Feng, Jun Shen, Horst Hahn, Si Lan. In Situ Scattering Studies of Crystallization Kinetics in a Phase-Separated Zr-Cu-Fe-Al Bulk Metallic Glass [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 103-114. |
[4] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[5] | Xian-Kai Fan, Fu-Quan Li, Lei Liu, Hai-Chao Cui, Feng-Gui Lu, Xin-Hua Tang. Evolution of γ′ Particles in Ni-Based Superalloy Weld Joint and Its Effect on Impact Toughness During Long-Term Thermal Exposure [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 561-572. |
[6] | Xin He, Jianbo Zhang, Yuanyi Peng, Jingan Li, Jian Ding, Chang Liu, Xingchuan Xia, Xueguang Chen, Yongchang Liu. Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1709-1726. |
[7] | Zhi-Chao Ma, Xiao-Xi Ma, Hong-Wei Zhao, Fu Zhang, Li-Ming Zhou, Lu-Quan Ren. Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 797-802. |
[8] | Hua-Ping Tang, Qu-Dong Wang, Chuan Lei, Kui Wang, Bing Ye, Hai-Yan Jiang, Wen-Jiang Ding. Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al-5.0Mg-0.6Mn-0.25Ce Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1549-1564. |
[9] | Xiao-Hui Wang, Jian Kang, Yun-Jie Li, Guo Yuan, R. D. K. Misra, Guo-Dong Wang. Effect of Cooling Rates in Coiling Process on Microstructures and Mechanical Properties in Al-Bearing Hot-Rolled TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1207-1218. |
[10] | Chuan Wu, Shuang Han. Hot Deformation Behavior and Dynamic Recrystallization Characteristics in a Low-Alloy High-Strength Ni-Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 963-974. |
[11] | Ke Yang, Xin-Hui Fan, Bing Li, Yan-Hong Li, Xin Wang, Xuan-Xuan Xu. Non-isothermal Crystallization Kinetics and Isothermal Crystallization Kinetics in Supercooled Liquid Region of Cu-Zr-Al-Y Bulk Metallic Glass [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 290-298. |
[12] | Hui-Ping Li, Rui Jiang, Lian-Fang He, Hui Yang, Cheng Wang, Chun-Zhi Zhang. Influence of Deformation Degree and Cooling Rate on Microstructure and Phase Transformation Temperature of B1500HS Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 33-47. |
[13] | Tong Gao, Zeng-Qiang Li, Yao-Xian Zhang, Xiang-Fa Liu. Evolution Behavior of γ-Al3.5FeSi in Mg Melt and a Separation Method of Fe from Al-Si-Fe Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 48-54. |
[14] | Guang-Di Zhao, Guo-Liang Yang, Fang Liu, Xin, Wen-Ru Sun. Transformation Mechanism of (γ + γ′) and the Effect of Cooling Rate on the Final Solidification of U720Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 887-894. |
[15] | Shuang Gao,Jie-Shan Hou,Kai-Xin Dong,Lan-Zhang Zhou. Influences of Cooling Rate After Solution Treatment on Microstructural Evolution and Mechanical Properties of Superalloy Rene 80 [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 261-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||