Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 1007-1022.DOI: 10.1007/s40195-023-01526-7
Previous Articles Next Articles
Qiu-Yue Jia1,2, Yu-Min Wang1(), Xu Zhang1, Guo-Xing Zhang1, Qing Yang1, Li-Na Yang1, Xu Kong1, Xiao-Fang Li1, Rui Yang1(
)
Received:
2022-08-25
Revised:
2022-10-13
Accepted:
2022-10-14
Online:
2023-06-10
Published:
2023-02-11
Contact:
Yu‑Min Wang,Qiu-Yue Jia, Yu-Min Wang, Xu Zhang, Guo-Xing Zhang, Qing Yang, Li-Na Yang, Xu Kong, Xiao-Fang Li, Rui Yang. Multiscale Failure Mechanism Analysis of SiC Fiber-Reinforced TC17 Composite Subjected to Transverse Tensile Loading at Elevated Temperature[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1007-1022.
Add to citation manager EndNote|Ris|BibTeX
Material | Symbol | Description | Value |
---|---|---|---|
SiCf/TC17 | E1 (GPa) | Longitudinal elastic modulus | 265 |
E2 = E3 (GPa) | Transversal elastic modulus | 124 | |
G12 = G13 (GPa) | Shear modulus in plane 1-2 | 77.4 | |
G23 (GPa) | Shear modulus in plane 2-3 | 77.4 | |
μ12 = μ13 | Poisson's ratio in plane 1-2 | 0.26 | |
μ23 | Poisson's ratio in plane 2-3 | 0.26 | |
σ1T (MPa) | Longitudinal tensile strength | 1853 | |
σ1C (MPa) | Longitudinal compressive strength | 1853 | |
σ2T (MPa) | Transversal tensile strength | 127.5 | |
σ2C (MPa) | Transversal compressive strength | 350 | |
γ12 (MPa) | Shear strength | 127.5 | |
CTE (10-6/°C) | Coefficient of thermal expansion | 5 | |
TC17 | E (GPa) | Elastic modulus | 105 |
μ | Poisson's ratio | 0.39 | |
σs (MPa) | Yield strength | 970 | |
σb (MPa) | Tensile strength | 1163 | |
SiC | CTE (10-6/°C) | Coefficient of thermal expansion | 9.4 |
E (GPa) | Elastic modulus | 400 | |
μ | Poisson's ratio | 0.17 | |
CTE (10-6/°C) | Coefficient of thermal expansion | 3.5 |
Table 1 Material parameters used in the analysis (200 °C)
Material | Symbol | Description | Value |
---|---|---|---|
SiCf/TC17 | E1 (GPa) | Longitudinal elastic modulus | 265 |
E2 = E3 (GPa) | Transversal elastic modulus | 124 | |
G12 = G13 (GPa) | Shear modulus in plane 1-2 | 77.4 | |
G23 (GPa) | Shear modulus in plane 2-3 | 77.4 | |
μ12 = μ13 | Poisson's ratio in plane 1-2 | 0.26 | |
μ23 | Poisson's ratio in plane 2-3 | 0.26 | |
σ1T (MPa) | Longitudinal tensile strength | 1853 | |
σ1C (MPa) | Longitudinal compressive strength | 1853 | |
σ2T (MPa) | Transversal tensile strength | 127.5 | |
σ2C (MPa) | Transversal compressive strength | 350 | |
γ12 (MPa) | Shear strength | 127.5 | |
CTE (10-6/°C) | Coefficient of thermal expansion | 5 | |
TC17 | E (GPa) | Elastic modulus | 105 |
μ | Poisson's ratio | 0.39 | |
σs (MPa) | Yield strength | 970 | |
σb (MPa) | Tensile strength | 1163 | |
SiC | CTE (10-6/°C) | Coefficient of thermal expansion | 9.4 |
E (GPa) | Elastic modulus | 400 | |
μ | Poisson's ratio | 0.17 | |
CTE (10-6/°C) | Coefficient of thermal expansion | 3.5 |
Fig. 9 Fracture surfaces of specimen: a macromorphology, b second crack, c first crack, d micromorphology of interface debonding, e micromorphology of matrix crack
Fig. 11 Section surface morphologies along the fiber direction of the first crack: a cracks of section surface, b matrix crack, c matrix crack, d interface crack
Fig. 12 Section surface morphologies perpendicular to the fiber direction of the second crack: a cracks of section surface, b partial enlargement of cracks, c cracks of interface and matrix, d cracks of section surface, e partial enlargement of cracks, f cracks of interface and matrix
Fig. 14 Phase and KAM distribution: a phase distribution in region I, b KAM distribution of α phase in region I, c KAM distribution of β phase in region I,0 d phase distribution of region II, e KAM distribution of α phase in region II, f KAM distribution of β phase in region II, g phase distribution of region III, h KAM distribution of α phase in region III, i KAM distribution of β phase in region III
Fig. 16 Damage and failure process of the macro-simulation: a damage initiation, b damage concentration, c damage propagation, d first crack, e second crack, f cladding plastic deformation
Fig. 18 Damage and failure process of the meso-simulation: a interface damage, b propagation of interface damage, c interface debonding, d matrix plastic deformation, e propagation of matrix plastic deformation, f combination of interface debonding and matrix plastic deformation
[1] | Y.M. Wang, G.X. Zhang, X. Zhang, Q. Yang, L.N. Yang, R. Yang, Acta Metall. Sin. 52, 1153 (2016) |
[2] | Z.Y. Zhao, L.Z. Zhang, P.K. Bai, W.B. Du, S.W. Wang, X.Y. Xu, Q.N. Dong, Y.X. Li, B. Han, Acta Metall. Sin. -Engl. Lett. 34, 1317 (2021) |
[3] | H. Zhang, Y. Yang, X. Luo, Trans. Nonferrous Met. Soc. China 25, 261 (2015) |
[4] |
X. Luo, H. Xu, Y. Yang, C. Wu, S. Wu, B. Huang, Adv. Eng. Mater. 19, 1600545(2017)
DOI URL |
[5] |
N. Carrere, F. Feyel, S. Kruch, Aerosp. Sci. Technol. 7, 307 (2003)
DOI URL |
[6] |
D.B. Gundel, S.G. Warrier, D.B. Miracle, Acta Mater. 45, 1275 (1997)
DOI URL |
[7] |
P.J. Cotterill, P. Bowen, J. Mater. Sci. 31, 5897(1996)
DOI URL |
[8] | G.P. Tandon, R.Y. Kim, S.G. Warrier, B.S. Majumdar, Compos. Pt. B 30, 115 (1999) |
[9] |
G. Tandon, Compos. Sci. Technol. 60, 2281 (2000)
DOI URL |
[10] |
R. Valle, J.C. Daux, Metall. Mater. Trans. A 48, 883 (2016)
DOI |
[11] | J.L. Liu, Y.M. Wang, G.X. Zhang, X. Zhang, L.N. Yang, Q. Yang, R. Yang, Acta Metall. Sin. 54, 1809 (2018) |
[12] |
M.J. Mahmoodi, M.M. Aghdam, Mater. Sci. Eng. A 528, 7983 (2011)
DOI URL |
[13] |
M.M. Aghdam, S.R. Morsali, S.M.A. Hosseini, M. Sadighi, Mater. Sci. Eng. A 688, 244 (2017)
DOI URL |
[14] |
M.J. Mahmoodi, M.M. Aghdam, M. Shakeri, Mater. Des. 31, 829 (2010)
DOI URL |
[15] |
X. Luo, P. Guo, Y. Yang, N. Jin, S. Liu, Z. Kou, S. Wu, Mater. Sci. Eng. A 647, 265 (2015)
DOI URL |
[16] |
X. Luo, X. Ji, Y. Yang, W. Zhang, S. Liu, Z. Xiao, Mater. Sci. Eng. A 597, 95 (2014)
DOI URL |
[17] |
Q. Sun, X. Luo, Y.Q. Yang, J.H. Lou, M.H. Li, B. Huang, C. Li, Mater. Sci. Eng. A 642, 262 (2015)
DOI URL |
[18] |
M.M. Aghdam, S.R. Falahatgar, M. Gorji, Compos. Sci. Technol. 68, 3406 (2008)
DOI URL |
[19] |
Y. Wang, X. Xu, W.X. Zhao, N. Li, S.A. McDonald, Y. Chai, M. Atkinson, K.J. Dobson, S. Michalik, Y.W. Fan, P.J. Withers, X.R. Zhou, T.L. Burnett, Acta Mater. 213, 116976 (2021)
DOI URL |
[20] |
X. Kong, Y. Wang, Q. Yang, X. Zhang, G. Zhang, L. Yang, Y. Wu, R. Yang, Mater. Lett. 245, 37 (2019)
DOI |
[21] | X. Kong, Y. Wang, Q. Yang, X. Zhang, G. Zhang, L. Yang, Y. Wu, R. Yang, Int. J. Lightweight Mater. Manuf. 4, 9 (2021) |
[22] |
X. Zhang, Y. Wang, J. Lei, R. Yang, Acta Metall. Sin. 48, 1306 (2012)
DOI URL |
[23] | X. Zhang, Y. Wang, Q. Yang, J. Lei, R. Yang, Acta Metall. Sin. 51, 1025 (2015) |
[24] | X. Zhang, Q. Yang, Y.M. Wang, J.F. Lei, R. Yang, Chin. J. Nonferr. Metal. 20, 203 (2010) |
[25] |
M.P. Thomas, M.R. Winstone, J. Mater. Sci. 33, 5499(1998)
DOI URL |
[26] | H. Sertse, W. Yu, in 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference(2017). |
[27] |
J.H. You, Int. J. Mech. Sci. 51, 816(2009)
DOI URL |
[28] |
C. González, J. Llorca, Acta Mater. 54, 4171 (2006)
DOI URL |
[29] |
X. Hui, Y. Xu, W. Zhang, Compos. Struct. 263, 113681 (2021)
DOI URL |
[30] | E.O. Akser, K.L. Choy, Compos. Pt. A 32, 243 (2001) |
[31] |
X. Kong, Y. Wang, Q. Yang, X. Zhang, G. Zhang, L. Yang, Y. Wu, R. Yang, J. Alloys Compd. 826, 153928(2020)
DOI URL |
[32] | X. Kong, Y.M. Wang, X. Zhang, Q. Yang, G.X. Zhang, L.N. Yang, R. Yang, Acta Metall. Sin. -Engl. Lett. 32, 1244 (2019) |
[33] |
J.C. Li, X.W. Chen, F.L. Huang, Mater. Sci. Eng. A 652, 145 (2016)
DOI URL |
[34] |
G. Kinvi-Dossou, R. Matadi Boumbimba, N. Bonfoh, Y. Koutsawa, D. Eccli, P. Gerard, Compos. Struct. 200, 540 (2018)
DOI URL |
[35] | P. E. Linde, J. Pleitner, H. D. Boer, C. Carmone, in Abaqus Users Conference(2004). |
[36] | G.I. Barenblatt, Adv. Appl. Mech. 7, 56 (1962) |
[37] |
D.S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960)
DOI URL |
[38] |
A. Needleman, Ultramicroscopy 40, 203 (1992)
DOI URL |
[39] | H. Qing, Acta Metall. Sin. -Engl. Lett. 27, 844 (2014) |
[40] | Y. Wang, J. Chen, H.B. Li, Acta Metall. Sin. -Engl. Lett. 21, 295 (2008) |
[41] | M.M. Aghdam, S.M.A. Hosseini, S.R. Morsali, Comput. Mater. Sci. 108, 42 (2015) |
[42] |
J.I. Eldridge, P.K. Brindley, J. Mater. Sci. Lett 8, 1451(1989)
DOI URL |
[43] |
J.I. Eldridge, B.T. Ebihara, J. Mater. Res. 9, 1035(1994)
DOI URL |
[44] | D. Osborne, N. Chandra, H. Ghonem, Compos. Pt. A 32, 545 (2001) |
[45] |
A.F. Kalton, S.J. Howard, J. Janczak-Rusch, T.W. Clyne, Acta Mater. 46, 3175 (1998)
DOI URL |
[1] | Anqi Zuo, Xia Liu, Chendong Shao, Mingzhe Fan, Ninshu Ma, Fenggui Lu. In Situ DIC Study on LCF Behavior of Retired Weld Joint Subjected to Prolonged Service at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1317-1328. |
[2] | V. Arumugam, S. Barath Kumar, C.Santulli, A. Joseph Stanley. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(5): 351-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||