Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1317-1328.DOI: 10.1007/s40195-021-01353-8
Previous Articles Next Articles
Anqi Zuo1, Xia Liu2, Chendong Shao1(), Mingzhe Fan1, Ninshu Ma3, Fenggui Lu1(
)
Received:
2021-07-01
Revised:
2021-08-16
Accepted:
2021-08-27
Online:
2021-11-25
Published:
2021-11-25
Contact:
Chendong Shao,Fenggui Lu
About author:
Fenggui Lu Lfg119@sjtu.edu.cnAnqi Zuo, Xia Liu, Chendong Shao, Mingzhe Fan, Ninshu Ma, Fenggui Lu. In Situ DIC Study on LCF Behavior of Retired Weld Joint Subjected to Prolonged Service at Elevated Temperature[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1317-1328.
Add to citation manager EndNote|Ris|BibTeX
Material | C | Cr | Mo | Ni | Mn | V | Cu | Pb | Fe |
---|---|---|---|---|---|---|---|---|---|
BM | 0.23 | 1.29 | 0.94 | 0.65 | 0.40 | 0.38 | 0.08 | 0.03 | Bal. |
WM | 0.09 | 1.80 | 0.91 | 0.11 | 1.43 | 0.04 | 0.13 | 0.02 | Bal. |
Table 1 Chemical compositions of BM and WM (wt%)
Material | C | Cr | Mo | Ni | Mn | V | Cu | Pb | Fe |
---|---|---|---|---|---|---|---|---|---|
BM | 0.23 | 1.29 | 0.94 | 0.65 | 0.40 | 0.38 | 0.08 | 0.03 | Bal. |
WM | 0.09 | 1.80 | 0.91 | 0.11 | 1.43 | 0.04 | 0.13 | 0.02 | Bal. |
Fig. 1 Schematic of sampling specimens and in situ DIC setup: a weld joint of rotor; b fatigue test specimen (unit: mm); c in situ DIC setup for fatigue tests at high temperature
Fig. 2 Microstructures of the CrMoV weld joint: a overall microstructure of the weld joint; b equiaxed grains between two layers of weld bead; c equiaxed grains near the center of WM; d microstructure of CGZ in WM; e microstructure of EGZ in WM
Test location | RT | 500 °C | 540 °C |
---|---|---|---|
CGZ | 215 | 147 | 148 |
EGZ | 208 | 143 | 145 |
Table 2 Average values of the micro-hardness of CGZ in WM and EGZ near WM center at different temperatures (HV)
Test location | RT | 500 °C | 540 °C |
---|---|---|---|
CGZ | 215 | 147 | 148 |
EGZ | 208 | 143 | 145 |
Fig. 4 Stress-strain hysteresis loops of weld joint from different life periods: a, b 500 °C, c, d 540 °C; a, c results from DIC, b, d results from the extensometer
Fig. 5 Axial strain evolution of weld joint in 0.5% strain amplitude at 500 °C: a evolution of the strain distribution at tensile peak; b evolution of the strain distribution at compressive peak; c evolution of stress-strain hysteresis loops of point 1; d evolution of stress-strain hysteresis loops of point 2
Fig. 6 Axial strain evolution of weld joint in 0.5% strain amplitude at 540 °C: a evolution of the strain distribution at tensile peak; b evolution of the strain distribution at compressive peak; c evolution of stress-strain hysteresis loops of point 3; d evolution of stress-strain hysteresis loops of point 4
Fig. 7 Evolution of stress-strain hysteresis loops of weld joint and the axial strain distribution across weld joint at 540 °C: a, b the 1st cycle; c, d the 10th cycle; e, f the mid-life cycle
Fig. 8 Microstructure of the specimen tested at 540 °C: a macrostructure of the specimen; b detailed microstructure in a; c inverse pole figure (IPF) of crack initiation area in b; d IPF of crack propagation area in b; e detailed microstructure in a; f IPF of crack initiation area in e; g IPF of crack propagation area in e
Fig. 9 Relationship between the failure locations and the ratchetting strain: a distribution of axial ratchetting strain along weld joint at 500 °C; b distribution of axial ratchetting strain along weld joint at 540 °C; c fracture location at 500 °C; d fracture location at 540 °C
[1] | W.K. Wang, Y. Liu, Y. Guo, Z.Z. Xu, J. Zhong, J.X. Zhang, Mater. Sci. Eng. A 786, 139473 (2020) |
[2] |
M. Stanisław, G. Grzegorz, S. Jacek, Solid State Phenom. 224, 57 (2015)
DOI URL |
[3] | J. Dobrzański, A. Zieliński, H. Krztoń, J. Achiev. Mater. Manuf. Eng. 23, 39 (2007) |
[4] | J. Zhang, Y.Y. Guo, M. Zhang, Z.Y. Yang, Y.S. Luo, Acta Metall. Sin. -Engl. Lett. 33, 1423 (2020) |
[5] |
A. Joarder, N.S. Cheruvu, D.S. Sarma, Mater. Char. 28, 121 (1992)
DOI URL |
[6] |
A. Joarder, N.S. Cheruvu, D.S. Sarma, Mater. Trans. JIM 32, 135 (1991)
DOI URL |
[7] | X.K. Fan, F.Q. Li, L. Liu, H.C. Cui, F.G. Lu, X.H. Tang, Acta Metall. Sin. -Engl. Lett. 33, 561 (2020) |
[8] |
A. Zuo, C. Shao, X. Huo, N. Ma, F. Lu, J. Manuf. Process. 64, 1287 (2021)
DOI URL |
[9] | C.Z. Zhang, C.D. Shao, H.C. Cui, H.L. Xu, F.G. Lu, Acta Metall. Sin. -Engl. Lett. 33, 808 (2020) |
[10] | M. Okazaki, M. Hashimoto, T. Mochizuki, J. Press. Vessel Technol. 113, 549 (1991) |
[11] | Y. Wang, C. Shao, H. Cui, M. Fan, N. Ma, F. Lu, Mater. Sci. Eng. A 773, 138810 (2020) |
[12] |
W.K. Wang, J.X. Zhang, J. Zhong, Int. J. Mech. Sci. 150, 66 (2019)
DOI URL |
[13] |
W. Wang, J. Zhang, J. Zhong, Int. J. Fatigue 139, 105771 (2020)
DOI URL |
[14] |
H. Luo, G. Kang, Q. Kan, Y. Huang, Int. J. Fatigue 105, 169 (2017)
DOI URL |
[15] |
C. He, C. Huang, Y. Liu, J. Li, Q. Wang, Mater. Des. 65, 289 (2015)
DOI URL |
[16] |
J.C. Stinville, F. Bridier, D. Ponsen, P. Wanjara, P. Bocher, Int. J. Fatigue 70, 278 (2015)
DOI URL |
[17] |
T. Nakata, H. Tanigawa, Fusion Eng. Des. 87, 589 (2012)
DOI URL |
[18] |
X. Ren, X. Xu, C. Jiang, Z. Huang, X. He, Opt. Laser Eng. 124, 105839 (2020)
DOI URL |
[19] |
M.C. Robin, D. Delagnes, R. Logé, P.O. Bouchard, S.D. Costa, M. Monteagudo-Galindo, V. Velay, Int. J. Fatigue 54, 84 (2013)
DOI URL |
[20] |
S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, Theor. Appl. Fract. Mech. 54, 63 (2010)
DOI URL |
[21] | G. Kang, Y. Liu, Mater. Sci. Eng. A 472, 258 (2008) |
[22] |
S.J. Guo, R.Z. Wang, H. Chen, F.Z. Xuan, Int. J. Mech. Sci. 150, 66 (2019)
DOI URL |
[23] |
X. Zhang, T. Wang, X. Gong, Q. Li, Y. Liu, Q. Wang, H. Zhang, Q. Wang, Int. J. Fatigue 144, 106070 (2021)
DOI URL |
[24] | F.M. Bai, H.W. Zhou, X.H. Liu, M. Song, Y.X. Sun, H.L. Yi, Z.Y. Huang, Acta Metall. Sin. -Engl. Lett. 32, 1346 (2019) |
[25] |
C.L. Zou, J.C. Pang, L.J. Chen, S.X. Li, Z.F. Zhang, Int. J. Fatigue 135, 105576 (2020)
DOI URL |
[1] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[2] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[3] | Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432. |
[4] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[5] | Yan-Fei Wang, Jian An, Kun Yin, Ming-Sai Wang, Yu-Sheng Li, Chong-Xiang Huang. Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu-30Zn Joints [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 878-886. |
[6] | Z. D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L. H. Lou, J. Zhang. Low-Cycle Fatigue Properties of Nickel-Based Superalloys Processed by High-Gradient Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 878-886. |
[7] | V. Arumugam, S. Barath Kumar, C.Santulli, A. Joseph Stanley. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(5): 351-364. |
[8] | Z. Liu; Y. Y. Xu; Z.G. Wang; Y. Wang; and Z. Y. Liu State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, Tile Chinese Academy of Sciences, Shenyang 110015, China School of Material Science and Engineering, Shenyang Technical University, Shenyang 110023, China. LOW CYCLE FATIGUE BEHAVIOR OF AZ91HP ALLOY IN AS HIGH PRESSURE DIE CASTING [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(4): 961-966. |
[9] | NI Yushan CHENG Guangxu KUANG Zhenbang Xi'an Jiaotong University,China doctorate student,Institute of Engineering Mechanics,Xi'an Jiaotong University,Xi'an 710049,China. FRACTAL ANALYSIS OF FRACTURE SURFACE OF WELDED JOINT UNDER LOW CYCLE FATIGUE [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(3): 172-178. |
[10] | HU Zhenhua XIAO Jiexuan Huazhong University of Science and Technology,Wuhan,China HU Zhenhua,Associate Professor,Huazhong University of Science and Technology,Wuhan 430074,China. CYCLIC SOFTENING IN HOT-WORKING DIE STEELS DURING LOW-CYCLE FATIGUE [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(3): 199-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||