Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (2): 192-214.DOI: 10.1007/s40195-022-01458-8
Previous Articles Next Articles
Yun Zhang1, Chen Jiang1, Shaoheng Sun2, Wei Xu1,3(), Quan Yang1, Yongjun Zhang1, Shiwei Tian1, Xiaoge Duan1, Zhe Xu4, Haitao Jiang1(
)
Received:
2022-05-26
Revised:
2022-07-16
Accepted:
2022-07-18
Online:
2023-02-10
Published:
2022-09-03
Contact:
Haitao Jiang, jianght@ustb.edu.cn;Wei Xu, weixu@ustb.edu.cn
Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214.
Add to citation manager EndNote|Ris|BibTeX
Loading direction | Mechanical property | |||
---|---|---|---|---|
Strain rate (s−1) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Fracture elongation (%) | |
RD | 10-4 | 195.5 ± 1.5 | 263.3 ± 1.9 | 33.6 ± 2.0 |
10-3 | 202.2 ± 1.5 | 270.3 ± 0.9 | 26.5 ± 2.5 | |
10-2 | 210.9 ± 1.5 | 272.3 ± 2.2 | 21.2 ± 4.0 | |
10-1 | 219.4 ± 3.3 | 273.1 ± 5.0 | 19.5 ± 2.0 | |
45°RD | 10-4 | 167.3 ± 1.7 | 240.2 ± 3.0 | 37.9 ± 4.8 |
10-3 | 170.5 ± 1.0 | 249.7 ± 2.0 | 31.9 ± 6.2 | |
10-2 | 173.8 ± 2.2 | 255.3 ± 1.9 | 29.1 ± 3.3 | |
10-1 | 180.5 ± 3.2 | 260.1 ± 4.0 | 27.4 ± 2.8 | |
TD | 10-4 | 160.0 ± 3.0 | 244.7 ± 4.8 | 41.0 ± 6.1 |
10-3 | 162.0 ± 3.3 | 252.4 ± 3.5 | 32.5 ± 3.6 | |
10-2 | 162.7 ± 4.3 | 255.3 ± 3.9 | 30.7 ± 1.7 | |
10-1 | 163.9 ± 3.0 | 255.2 ± 2.5 | 26.0 ± 1.6 |
Table 1 Mechanical properties with different strain rates
Loading direction | Mechanical property | |||
---|---|---|---|---|
Strain rate (s−1) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Fracture elongation (%) | |
RD | 10-4 | 195.5 ± 1.5 | 263.3 ± 1.9 | 33.6 ± 2.0 |
10-3 | 202.2 ± 1.5 | 270.3 ± 0.9 | 26.5 ± 2.5 | |
10-2 | 210.9 ± 1.5 | 272.3 ± 2.2 | 21.2 ± 4.0 | |
10-1 | 219.4 ± 3.3 | 273.1 ± 5.0 | 19.5 ± 2.0 | |
45°RD | 10-4 | 167.3 ± 1.7 | 240.2 ± 3.0 | 37.9 ± 4.8 |
10-3 | 170.5 ± 1.0 | 249.7 ± 2.0 | 31.9 ± 6.2 | |
10-2 | 173.8 ± 2.2 | 255.3 ± 1.9 | 29.1 ± 3.3 | |
10-1 | 180.5 ± 3.2 | 260.1 ± 4.0 | 27.4 ± 2.8 | |
TD | 10-4 | 160.0 ± 3.0 | 244.7 ± 4.8 | 41.0 ± 6.1 |
10-3 | 162.0 ± 3.3 | 252.4 ± 3.5 | 32.5 ± 3.6 | |
10-2 | 162.7 ± 4.3 | 255.3 ± 3.9 | 30.7 ± 1.7 | |
10-1 | 163.9 ± 3.0 | 255.2 ± 2.5 | 26.0 ± 1.6 |
Fig. 7 Microstructure characteristics of deformed TRC-ZA21 alloy under 3% strain: a RD-10-4 s?1; b RD-10-2 s?1; c 45°RD-10-4 s?1; d 45°RD-10-2 s?1; e TD-10-4 s?1; f TD-10-2 s.?1
Fig. 8 Microstructure characteristics of deformed TRC-ZA21 alloy with strain rate of 10-4 s?1: a RD-10% strain; b RD-failure strain; c 45°RD-10% strain; d 45°RD-failure strain; e TD-10% strain; f TD-failure strain
Fig. 9 IPFs and boundary misorientation maps of TRC-ZA21 alloy under 10% strain: a RD-10-4 s?1; b RD-10-2 s?1; c 45°RD-10-4 s?1; d 45°RD-10-2 s?1; e TD-10-4 s?1; f TD-10-2 s?1
Loading direction | Strain rate (s−1) | Strain | Twinning type | ||||
---|---|---|---|---|---|---|---|
{$10\overline{\text{1}}2$} Extension twins | {$10\overline{\text{1}}1$} Contraction twins | {$10\overline{\text{1}}$3} Contraction twins | {$10\overline{\text{1}}1$}−{$10\overline{\text{1}}2$} Secondary twins | Sum | |||
RD | 10-4 | 3% | 1.92 | 0.04 | 0.13 | 0.28 | 2.37 |
10-4 | 10% | 1.23 | 0.11 | 0.04 | 0.04 | 1.42 | |
10-4 | Failure | 0.89 | 0.10 | 0.19 | 0.19 | 1.37 | |
10-2 | 10% | 2.46 | 0.03 | 0.01 | 0.08 | 2.58 | |
45°RD | 10-4 | 10% | 4.07 | 0.06 | 0.03 | 0.18 | 4.34 |
10-2 | 10% | 4.74 | 0.12 | 0.09 | 0.11 | 5.06 | |
TD | 10-4 | 10% | 4.40 | 0.05 | 0.05 | 0.06 | 4.56 |
10-2 | 3% | 6.36 | 0.22 | 0.04 | 0.15 | 6.77 | |
10-2 | 10% | 4.68 | 0.13 | 0.05 | 0.05 | 4.91 | |
10-2 | Failure | 1.36 | 0.24 | 0.18 | 0.45 | 2.23 |
Table 2 Fraction of twin boundary in TRC-ZA21 alloy during tensile deformation process (%)
Loading direction | Strain rate (s−1) | Strain | Twinning type | ||||
---|---|---|---|---|---|---|---|
{$10\overline{\text{1}}2$} Extension twins | {$10\overline{\text{1}}1$} Contraction twins | {$10\overline{\text{1}}$3} Contraction twins | {$10\overline{\text{1}}1$}−{$10\overline{\text{1}}2$} Secondary twins | Sum | |||
RD | 10-4 | 3% | 1.92 | 0.04 | 0.13 | 0.28 | 2.37 |
10-4 | 10% | 1.23 | 0.11 | 0.04 | 0.04 | 1.42 | |
10-4 | Failure | 0.89 | 0.10 | 0.19 | 0.19 | 1.37 | |
10-2 | 10% | 2.46 | 0.03 | 0.01 | 0.08 | 2.58 | |
45°RD | 10-4 | 10% | 4.07 | 0.06 | 0.03 | 0.18 | 4.34 |
10-2 | 10% | 4.74 | 0.12 | 0.09 | 0.11 | 5.06 | |
TD | 10-4 | 10% | 4.40 | 0.05 | 0.05 | 0.06 | 4.56 |
10-2 | 3% | 6.36 | 0.22 | 0.04 | 0.15 | 6.77 | |
10-2 | 10% | 4.68 | 0.13 | 0.05 | 0.05 | 4.91 | |
10-2 | Failure | 1.36 | 0.24 | 0.18 | 0.45 | 2.23 |
Fig. 10 IPFs and boundary misorientation maps of TRC-ZA21 alloy under 3% strain and failure: a RD-10-4 s?1-3% strain; b RD-10-4 s?1-failure strain; c TD-10-2 s?1-3% strain; d TD-10-2 s?1-failure strain
Fig. 11 KAM maps of TRC-ZA21 alloy during tensile deformation: a RD-10-4 s?1-3% strain; b TD-10-2 s?1-3% strain; c RD-10-4 s?1-10% strain; d TD-10-2 s?1-10% strain; e RD-10-4 s?1-failure strain; f TD-10-2 s?1-failure strain
Fig. 12 Average KAM values of TRC-ZA21 alloy during plastic deformation: a variation of KAM value under different strains; b average KAM values under 10% strain
Fig. 13 Micro-basal pole figures of TRC-ZA21 alloy during tensile deformation: a RD-10-4 s?1-3% strain; b TD-10-2 s?1-3% strain; c RD-10-4 s?1-10% strain; d TD-10-2 s?1-10% strain; e RD-10-4 s?1-failure strain; f TD-10-2 s?1-failure strain
Fig. 15 IGMA distribution maps of TRC-ZA21 alloy under 10% strain: a RD-10-4 s?1; b RD-10-2 s?1; c 45°RD-10-4 s?1; d 45°RD-10-2 s?1; e TD-10-4 s?1; f TD-10-2 s.?1
Fig. 16 IGMA distribution maps of TRC-ZA21 alloy during tensile deformation: a RD-10-4 s?1-3% strain; b RD-10-4 s?1-failure strain; c TD-10-2 s?1-3% strain; d TD-10-2 s?1-failure strain
Fig. 17 Schmid factor distribution of basal and prismatic slip in TRC-ZA21 alloy: a basal $\left\langle a \right\rangle$ slip; b prismatic $\left\langle a \right\rangle$ slip
Fig. 18 Relationship between initial grain orientation and applied stress direction: a three-dimensional model of sheet; b section of ND × TD; c section of RD × TD
[1] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9, 705 (2021)
DOI URL |
[2] |
S. Jin, X. Ma, R. Wu, T. Li, J. Wang, B.I. Krit, L. Hou, J. Zhang, G. Wang, Int. J. Miner. Metall. Mater. 29, 1453 (2022)
DOI URL |
[3] |
X. Ma, S. Jin, R. Wu, J. Wang, G. Wang, B. Krit, S. Betsofen, Trans. Nonferrous Met. Soc. China 31, 3228 (2021)
DOI URL |
[4] |
D.H. Qin, M.J. Wang, C.Y. Sun, Z.X. Su, L.Y. Qian, Z.H. Sun, Mater. Sci. Eng. A 788, 139537 (2020)
DOI URL |
[5] |
P.D. Huo, F. Li, Y. Wang, R.Z. Wu, R.H. Gao, A.X. Zhang, Mater. Des. 219, 110696 (2022)
DOI URL |
[6] |
K. Nie, Z. Zhu, P. Munroe, K. Deng, J. Han, Acta Metall. Sin. (Engl. Lett.) 33, 922 (2020)
DOI URL |
[7] |
Q. Liao, W. Hu, Q. Le, X. Chen, K. Hu, C. Cheng, C. Hu, Acta Metall. Sin. (Engl. Lett.) 33, 1359 (2020)
DOI URL |
[8] |
J. Zhang, H. Liu, Y. Xie, G. Huang, X. Chen, B. Jiang, A. Tang, F. Pan, Acta Metall. Sin. (Engl. Lett.) 33, 1487 (2020)
DOI URL |
[9] |
D. Wang, S. Liu, R. Wu, S. Zhang, Y. Wang, H. Wu, J. Zhang, L. Hou, J. Alloys Compd. 881, 160663 (2021)
DOI URL |
[10] |
Y. Zhang, C. Jiang, Q. Yang, Y. Zhang, S. Tian, Y. Yang, H. Jiang, Mater. Sci. Eng. A 846, 143252 (2022)
DOI URL |
[11] |
Z. Gui, F. Wang, J. Zhang, D. Chen, Z. Kang, J. Magnes. Alloy. 10, 239 (2022)
DOI URL |
[12] |
J. Bočan, J. Maňák, A. Jäger, Mater. Sci. Eng. A 644, 121 (2015)
DOI URL |
[13] |
Y. Wang, H. Choo, Acta Mater. 81, 83 (2014)
DOI URL |
[14] |
F. Guo, H. Yu, C. Wu, Y. Xin, C. He, Q. Liu, Sci. Rep. 7, 8647 (2017)
DOI URL |
[15] |
Q. Dai, D. Zhang, X. Chen, Mater. Des. 32, 5004 (2011)
DOI URL |
[16] |
A.K. Rodriguez, G.A. Ayoub, B. Mansoor, A.A. Benzerga, Acta Mater. 112, 194 (2016)
DOI URL |
[17] |
M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, M.X. Huang, Acta Mater. 201, 102 (2020)
DOI URL |
[18] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater. 88, 232 (2015)
DOI URL |
[19] |
W. Zhang, Y. Ye, L. He, P. Li, H. Zhang, J. Alloys Compd. 696, 1067 (2017)
DOI URL |
[20] |
M.R. Barnett, Metall. Mater. Trans. A 34, 1799 (2003)
DOI URL |
[21] |
Y. Zhang, H. Jiang, Q. Kang, Y. Wang, Y. Yang, S. Tian, J. Magnes. Alloy. 8, 769 (2020)
DOI URL |
[22] |
X. Huang, Y. Xin, Y. Gao, G. Huang, W. Li, J. Mater. Sci. Technol. 109, 30 (2022)
DOI URL |
[23] |
Z. Liu, X. Zhao, K. Chen, S. Wang, X. Ren, Z. Zhang, Y. Xue, Acta Metall. Sin. (Engl. Lett.) 35, 839 (2022)
DOI URL |
[24] |
C. Wang, H. Ning, S. Liu, J. You, T. Wang, H. Jia, M. Zha, H. Wang, Scr. Mater. 204, 114119 (2021)
DOI URL |
[25] |
J. Wu, L. Jin, J. Dong, F. Wang, S. Dong, J. Mater. Sci. Technol. 42, 175 (2020)
DOI URL |
[26] |
P. Wang, H. Jiang, Y. Wang, Y. Zhang, J. Tao, Acta Metall. Sin. (Engl. Lett.) 35, 941 (2021)
DOI URL |
[27] |
Z. Gui, Z. Kang, Y. Li, Mater. Sci. Eng. C 96, 831 (2019)
DOI URL |
[28] |
Z. Gui, Z. Kang, Y. Zhou, J. Zhang, Adv. Eng. Mater. 23, 2000752 (2021)
DOI URL |
[29] |
Y. Wang, Y. Zhang, H. Jiang, Mater. Charact. 179, 111374 (2021)
DOI URL |
[30] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120, 164 (2019)
DOI URL |
[31] |
A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151, 56 (2018)
DOI URL |
[32] |
N.V. Dudamell, P. Hidalgo-Manrique, A. Chakkedath, Z. Chen, C.J. Boehlert, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, M.T. Pérez-Prado, Mater. Sci. Eng. A 583, 220 (2013)
DOI URL |
[33] |
S. Kurukuri, M.J. Worswick, A. Bardelcik, B.K. Mishra, J.T. Carter, Metall. Mater. Trans. A 45, 3321 (2014)
DOI URL |
[34] |
Y. Zhang, H. Jiang, S. Wang, Y. Wang, S. Tian, H. Lin, G. Zhang, Y. Yang, Z. Xu, Mater. Sci. Eng. A 804, 140566 (2021)
DOI URL |
[35] |
Y. Zhang, H. Jiang, Y. Wang, Q. Kang, J. Wang, H. Lin, G. Zhang, Mater. Res. Express 6, 086576 (2019)
DOI URL |
[36] |
M.A. Kumar, I.J. Beyerlein, C.N. Tomé, J. Alloys Compd. 695, 1488 (2017)
DOI URL |
[37] |
T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, N.J. Kim, Nat. Commun. 9, 2522 (2018)
DOI PMID |
[38] |
P. Qin, Q. Yang, K. Guan, F. Meng, S. Lv, B. Li, D. Zhang, N. Wang, J. Zhang, J. Meng, Mater. Sci. Eng. A 764, 138254 (2019)
DOI URL |
[39] |
V.M. Miller, T.D. Berman, I.J. Beyerlerin, J.W. Jones, T.M. Pollock, Mater. Sci. Eng. A 675, 345 (2016)
DOI URL |
[40] |
R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J.M. Molina-Aldareguia, Acta Mater. 93, 114 (2015)
DOI URL |
[41] |
J.W. Christian, S. Mahajan, Prog. Mater Sci. 39, 1 (1995)
DOI URL |
[42] |
H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Scr. Mater. 112, 50 (2016)
DOI URL |
[43] |
Y. Xin, H. Zhou, G. Wu, H. Yu, A. Chapuis, Q. Liu, Mater. Sci. Eng. A 639, 534 (2015)
DOI URL |
[44] |
Z. Wang, H. Ding, Z. Xiao, C. Yang, C. Xiang, Mater. Sci. Eng. A 826, 141997 (2021)
DOI URL |
[45] |
H. Pan, G. Qin, Y. Huang, Q. Yang, Y. Ren, B. Song, L. Chai, Z. Zhao, J. Alloys Compd. 688, 149 (2016)
DOI URL |
[46] |
H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, Q. Peng, Nano Lett. 17, 6117 (2017)
DOI URL |
[47] |
H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, T. Sakai, J. Mater. Sci. 43, 7148 (2008)
DOI URL |
[48] |
C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012)
DOI URL |
[49] |
F. Kabirian, A.S. Khan, T. Gnaupel-Herlod, Int. J. Plast. 68, 1 (2015)
DOI URL |
[50] |
X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Int. J. Plast. 23, 44 (2007)
DOI URL |
[51] |
J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, S.R. Agnew, Metall. Mater. Trans. A 43, 1347 (2012)
DOI URL |
[52] |
I.H. Jung, M. Sanjari, J. Kim, S. Yue, Scr. Mater. 102, 1 (2015)
DOI URL |
[53] | Z. Wu, R. Ahmed, B. Yin, S. Sandlöbes, W.A. Curtin, Science. 359, 447 (2018) |
[54] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21, 1161 (2005)
DOI URL |
[55] |
J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005)
DOI URL |
[56] |
D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, C.N. Tomé, Mater. Sci. Eng. A 399, 1 (2005)
DOI URL |
[57] |
J. Koike, Metall. Mater. Trans. A 36, 1689 (2005)
DOI URL |
[58] |
D. Li, Q. Le, X. Li, P. Wang, Q. Liao, X. Zhou, C. Hu, J. Alloys Compd. 873, 159829 (2021)
DOI URL |
[59] | Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Metall. Mater. Trans. A 50, 4344 (2019) |
[60] |
P. Gao, S.Q. Zhu, X.H. An, S.Q. Xu, D. Ruan, C. Chen, H.G. Yan, S.P. Ringer, X.Z. Liao, Mater. Sci. Eng. A 691, 150 (2017)
DOI URL |
[61] |
X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, Mater. Sci. Eng. A 565, 359 (2013)
DOI URL |
[62] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater. 84, 443 (2015)
DOI URL |
[1] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[2] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[3] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[4] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[5] | Shuohong Gao, Xingchen Yan, Cheng Chang, Xinliang Xie, Qingkun Chu, Zhaoyang Deng, Bingwen Lu, Min Liu, Hanlin Liao, Nouredine Fenineche. Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1439-1452. |
[6] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[7] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[8] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[9] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[10] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[11] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[12] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[13] | Tao Ying, Mingdi Yu, Yiwen Chen, Huan Zhang, Jingya Wang, Xiaoqin Zeng. Dominant Deformation Mechanisms in Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1973-1982. |
[14] | Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824. |
[15] | Yunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||