Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 879-889.DOI: 10.1007/s40195-021-01351-W
Hao Gu1,2, Zhide Li1,4, Kaiguang Luo1,2, Laxman Bhatta1,2, Hanqing Xiong1,2, Yun Zhang1,2(), Charlie Kong3, Hailiang Yu1,2,4(
)
Received:
2021-06-11
Revised:
2021-08-18
Accepted:
2021-08-30
Online:
2022-06-10
Published:
2022-06-15
Contact:
Yun Zhang,Hailiang Yu
About author:
Hailiang Yu, yuhailiang@csu.edu.cnHao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889.
Add to citation manager EndNote|Ris|BibTeX
Mg | Mn | Fe | Si | Cr | Zn | Al |
---|---|---|---|---|---|---|
4.28 | 0.63 | 0.17 | 0.22 | 0.12 | 0.25 | Bal. |
Table 1 Chemical composition of AA5083 (wt%)
Mg | Mn | Fe | Si | Cr | Zn | Al |
---|---|---|---|---|---|---|
4.28 | 0.63 | 0.17 | 0.22 | 0.12 | 0.25 | Bal. |
Al | Co | Cr | Fe | Ni |
---|---|---|---|---|
5.65 | 21.76 | 24.66 | 23.37 | 24.56 |
Table 2 Chemical composition of Al0.5CoCrFeNi high-entropy alloy particles (wt%)
Al | Co | Cr | Fe | Ni |
---|---|---|---|---|
5.65 | 21.76 | 24.66 | 23.37 | 24.56 |
Materials | σYS (MPa) | σUTS (MPa) | El (%) |
---|---|---|---|
AA5083 | 120 ± 6 | 203 ± 13 | 23.0 ± 1.7 |
MMCs with 1 wt% HEAPs | 146 ± 7 | 218 ± 9 | 15.0 ± 0.9 |
MMCs with 3 wt% HEAPs | 207 ± 11 | 257 ± 14 | 11.7 ± 1.9 |
Table 3 Tensile mechanical properties of as-cast materials
Materials | σYS (MPa) | σUTS (MPa) | El (%) |
---|---|---|---|
AA5083 | 120 ± 6 | 203 ± 13 | 23.0 ± 1.7 |
MMCs with 1 wt% HEAPs | 146 ± 7 | 218 ± 9 | 15.0 ± 0.9 |
MMCs with 3 wt% HEAPs | 207 ± 11 | 257 ± 14 | 11.7 ± 1.9 |
Fig. 5 Mechanical properties of AA5083 and AA5083/Al0.5CoCrFeNi HEAPs MMCs via HR and CR. a UTS, b elongation to fracture, and c microhardness of the MMCs with different mass fraction of HEAPs
Fig. 6 Fracture surface of as-cast a AA5083, b AA5083/Al0.5CoCrFeNi HEAPs MMCs with 3 wt% of HEAPs, and AA5083 subjected to c HR and d CR with 80% rolling reduction ratio, and the MMCs with 3 wt% HEAPs subjected to e HR and f CR with 80% rolling reduction ratio
Fig. 8 Illustration of strengthening mechanism and microstructural evolution of materials during rolling. As-cast a AA5083 and b AA5083/HEAPs MMCs, rolled c AA5083, d AA5083/HEAPs MMCs
[1] | V. Chak, H. Chattopadhyay, T.L. Dora, J. Manuf. Process. 56, 1059 (2020). |
[2] | J.M. Torralba, C.E.D. Costa, F. Velasco, J. Mater. Process. Technol. 133, 203 (2003). |
[3] | R. Casati, A. Fabrizi, A. Tuissi, K. Xia, M. Vedani, Mater. Sci. Eng. A 648, 113 (2015). |
[4] | P. Farhadipour, M. Sedighi, M. Heydari Vini, Powder Metall. Met. Ceram. 56, 496 (2018). |
[5] | G.R. Li, T. Xu, H.M. Wang, Y.T. Zhao, G. Chen, X.Z. Kai,, J. Alloy. Compd. 855, 157107 (2021). |
[6] | X. Xi, B. Chen, C.W. Tan, X.G. Song, J.C. Feng,, J. Manuf. Process. 58, 763 (2020). |
[7] | T.B. Rao, Mater. Sci. Eng. A 801, 140553 (2020). |
[8] | S. Bathula, R.C. Anandani, A. Dhar, A.K. Srivastava, Mater. Sci. Eng. A 545, 97 (2012). |
[9] | H.B. Yang, K. Zhao, J.F. Nie, X.F. Liu, Mater. Sci. Eng. A 774, 138926 (2020). |
[10] | M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, S.R. Bakshi, Carbon 160, 14 (2020). |
[11] | X.W. Fu, Z.Y. Yu, Z.Q. Tan, G.L. Fan, P.F. Li, M.J. Wang, D.B. Xiong, Z.Q. Li, Mater. Sci. Eng. A 803, 140726 (2021). |
[12] | C.Y. Huang, S.P. Hu,K. Chen, Int. J. Min. Met. Mater. 26, 752 (2019). |
[13] | F. Khodabakhshi, M. Nosko, A.P. Gerlich, Surf. Coat. Technol. 335, 288 (2018). |
[14] | G.Q. Huang, Y.F. Shen, J. Manuf. Process. 30, 361 (2017). |
[15] | J.C. Li, Y.L. Li, F.F. Wang, X.C. Meng, L. Wan, Z.B. Dong, Y.X. Huang, Mater. Sci. Eng. A 792, 139755 (2020). |
[16] | Q.L. Li, S. Zhao, X.P. Bao, Y.S. Zhang, Y.Q. Zhu, C.Z. Wang, Y.F. Lan, Y.X. Zhang, T.D. Xia, J. Mater. Sci. Technol. 52, 1 (2020). |
[17] | G.M. Karthik, S. Panikar,, G.D.J. Ram, R.S. Kottada, Mater. Sci. Eng. A 679, 193 (2017). |
[18] | X. Yang, P. Dong, Z.F. Yan, B.Y. Cheng, X. Zhai, H.S. Chen, H.X. Zhang, W.X. Wang, J. Alloy. Compd. 836, 155411 (2020). |
[19] | N.R. Wang, B. Wu, W.L. Wu, J. Li, C.H. Ge, Y.F. Dong, L.X. Zhang, Y. Wang, Mater. Today Commun. 25, 101366 (2020). |
[20] | Z. Tan, L. Wang, Y.F. Xue, P. Zhang, T.Q. Cao, X.W. Cheng, Mater. Des. 109, 219 (2016). |
[21] | K. Praveen Kumar, M. Gopi Krishna, J. Babu Rao, N.R.M.R. Bhargava, J. Alloy. Compd. 640, 421 (2015). |
[22] | Y.Z. Liu, J. Chen, Z. Li, X.H. Wang, X.H. Fan, J.N. Liu, J. Alloy. Compd. 780, 558 (2019). |
[23] | Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, X.G. Wang, W.F. Qian, W.C. An, J. Alloy. Compd. 822, 153658 (2020). |
[24] | G.Q. Huang, J. Wu, W.T. Hou, Y.F. Shen, Mater. Sci. Eng. A 734, 353 (2018). |
[25] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014). |
[26] | S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater. 61, 1167 (2013). |
[27] | N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, P. Venugopal, Mater. Sci. Eng. A 398, 246 (2005). |
[28] | H.L. Yu, L.H. Su, C. Lu, K. Tieu, H.J. Li, J.T. Li, A. Godbole, C. Kong, Mater. Sci. Eng. A 674, 256 (2016). |
[29] | J.F. Nie, Y.F. Liu, F. Wang, H. Zhou, Y. Cao, X.F. Liu, X.H. An, X.Z. Liao, Y.T. Zhu, Y.H. Zhao, Mater. Sci. Eng. A 801, 140414 (2021). |
[30] | V. K.S. Jain, K.U. Yazar, S. Muthukumaran, J. Alloy. Compd. 798, 82 (2019). |
[31] | X. Cao, Q.Y. Shi, D.M. Liu, Z.L. Feng, Q. Liu, G.Q. Chen, Compos. Pt. B-Eng. 139, 97 (2018). |
[32] | R. Gupta, G.P. Chaudhari, B.S.S. Daniel, Compos. Pt. B-Eng. 140, 27 (2018). |
[33] | H. Chou, Y. Chang, S. Chen, J. Yeh, Mater. Sci. Eng. B 163, 184-189 (2009). |
[34] | Q. Zhang, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Mater. 60, 7090 (2012). |
[35] | Y.I. Bourezg, D. Elfiad, H. Azzeddine, D. Bradai, Thermochim. Acta 690, 178688 (2020). |
[36] | R.V. Kumar, R. Keshavamurthy, C.S. Perugu, P.G. Koppad, M. Alipour, Mater. Sci. Eng. A 738, 344 (2018). |
[37] | G. Falkinger, P. Simon, Procedia Eng. 207, 31 (2017). |
[38] | M. Avrami, J. Chem. Phys. 8, 212 (1940). |
[39] | X. Wang, K. Chandrashekhara, M.F. Buchely, S. Lekakh, D.C. Van Aken, R.J. O’Malley, G.W. Ridenour, E. Scheid, J. Manuf. Process. 52, 281 (2020). |
[40] | H.L. Yu, L. Wang, M. Yan, H. Gu, X. Zhao, C. Kong, Y. Wang, A. Pesin, A.P. Zhilyaev, T.G. Langdon, Adv. Eng. Mater. 22, 1901463 (2020). |
[1] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[2] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[3] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[4] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[5] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[6] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[7] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[8] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
[9] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[10] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[11] | Xiaodong Wang, Chaoyue Chen, Ruixin Zhao, Longtao Liu, Sansan Shuai, Tao Hu, Jiang Wang, Zhongming Ren. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 501-516. |
[12] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[13] | Jing Wang, Wei Li, Xiaodong Zhu, Li You, Laiqi Zhang. Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 341-352. |
[14] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[15] | Sheng Li, Biao Cai, Ranxi Duan, Lei Tang, Zihan Song, Dominic White, Oxana V. Magdysyuk, Moataz M. Attallah. Synchrotron Characterisation of Ultra-Fine Grain TiB2/Al-Cu Composite Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 78-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||