Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (10): 1731-1743.DOI: 10.1007/s40195-022-01392-9
Previous Articles Next Articles
Yunpeng Zeng1,2, Wei Yan2,3(), Xianbo Shi2,3, Maocheng Yan2, Yiyin Shan2,3, Ke Yang2(
)
Received:
2021-10-09
Revised:
2021-12-02
Accepted:
2021-12-21
Online:
2022-02-27
Published:
2022-02-27
Contact:
Wei Yan,Ke Yang
About author:
Ke Yang, kyang@imr.ac.cnYunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | S | P | Cu | Nb | Ti | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Cu-added steel | 0.02 | 0.010 | 0.07 | 0.002 | 0.005 | 1.34 | 0.04 | 0.017 | 0.1 | Bal. |
Cu-free steel | 0.06 | 0.014 | 1.64 | 0.001 | 0.010 | < 0.01 | 0.04 | 0.013 | 0.1 | Bal. |
Table 1 Chemical compositions of the experimental steels (wt%)
Steel | C | Si | Mn | S | P | Cu | Nb | Ti | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Cu-added steel | 0.02 | 0.010 | 0.07 | 0.002 | 0.005 | 1.34 | 0.04 | 0.017 | 0.1 | Bal. |
Cu-free steel | 0.06 | 0.014 | 1.64 | 0.001 | 0.010 | < 0.01 | 0.04 | 0.013 | 0.1 | Bal. |
Soil type | pH | Chemical composition (mg kg-1 soil) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
${\text{NO}}_{3}^{ - }$ | ${\text{Cl}}^{ - }$ | ${\text{SO}}_{4}^{2 - }$ | ${\text{HCO}}_{3}^{ - }$ | ${\text{Ca}}^{2 + }$ | ${\text{Mg}}^{2 + }$ | ${\text{K}}^{ + }$ | ${\text{Na}}^{ + }$ | Organic content | Whole nitrogen content | Total salt content | ||
Meadow soil | 7.75 | 46 | 31 | 48 | 234 | 57 | 32 | 2 | 4 | 2.26 × 104 | 910 | 464 |
Table 2 Physicochemical properties of the dried soil
Soil type | pH | Chemical composition (mg kg-1 soil) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
${\text{NO}}_{3}^{ - }$ | ${\text{Cl}}^{ - }$ | ${\text{SO}}_{4}^{2 - }$ | ${\text{HCO}}_{3}^{ - }$ | ${\text{Ca}}^{2 + }$ | ${\text{Mg}}^{2 + }$ | ${\text{K}}^{ + }$ | ${\text{Na}}^{ + }$ | Organic content | Whole nitrogen content | Total salt content | ||
Meadow soil | 7.75 | 46 | 31 | 48 | 234 | 57 | 32 | 2 | 4 | 2.26 × 104 | 910 | 464 |
Fig. 1 Optical microstructures and the corresponding TEM images of Cu-added steel a, b; Cu-free steel c, d. Inset of b shows the EDS mapping image of Cu in b
Steel | YS (MPa) | UTS (MPa) | EL (%) | CVN (J) |
---|---|---|---|---|
Cu-added steel | 606 | 670 | 23.5 | 324 |
Cu-free steel | 480 | 602 | 26.2 | 350 |
Table 3 Mechanical properties of Cu-added steel and Cu-free steel
Steel | YS (MPa) | UTS (MPa) | EL (%) | CVN (J) |
---|---|---|---|---|
Cu-added steel | 606 | 670 | 23.5 | 324 |
Cu-free steel | 480 | 602 | 26.2 | 350 |
Fig. 2 Variations of open circuit potential (EOCP) and linear polarization resistance (Rp) with immersion time for Cu-added and Cu-free steels: a EOCP; b Rp
Fig. 4 Equivalent circuit models used for EIS fitting analysis: a equivalent circuit for one-time constant, b equivalent circuit for two-time constant, c time dependence of Rct + Rf derived from EIS date of SRB-containing SES
Time (d) | Rs (Ω cm2) | Yf (S sn cm-2) | nf | Rf (Ω cm2) | Ydl (S sn cm-2) | ndl | Rct (Ω cm2) | ∑χ |
---|---|---|---|---|---|---|---|---|
Cu-free steel | ||||||||
1 | 353.3 | - | - | - | 1.170 × 10-4 | 0.8508 | 7.782 × 104 | 5.12 × 10-4 |
3 | 318.7 | - | - | - | 1.072 × 10-4 | 0.8902 | 1.443 × 104 | 6.13 × 10-4 |
5 | 291.0 | - | - | - | 1.261 × 10-4 | 0.8857 | 2.797 × 104 | 9.69 × 10-4 |
7 | 281.4 | - | - | - | 1.577 × 10-4 | 0.8396 | 3.644 × 104 | 7.85 × 10-4 |
14 | 227.4 | 8.017 × 10-4 | 0.7838 | 25.47 | 6.945 × 10-4 | 0.8598 | 1.290 × 104 | 9.64 × 10-5 |
21 | 202.7 | 7.521 × 10-4 | 0.9547 | 11.59 | 8.729 × 10-4 | 0.8511 | 2.699 × 104 | 1.19 × 10-4 |
28 | 180.2 | 7.756 × 10-4 | 0.9873 | 7.153 | 9.662 × 10-4 | 0.8447 | 3.642 × 104 | 2.08 × 10-4 |
Cu-added steel | ||||||||
1 | 336.7 | - | - | - | 1.202 × 10-4 | 0.8096 | 5.465 × 104 | 5.74 × 10-4 |
3 | 311.7 | - | - | - | 7.821 × 10-5 | 0.8763 | 4.314 × 104 | 1.34 × 10-3 |
5 | 278.2 | - | - | - | 6.829 × 10-5 | 0.8613 | 6.920 × 104 | 7.08 × 10-4 |
7 | 275.6 | - | - | - | 1.856 × 10-4 | 0.7191 | 6.015 × 104 | 7.22 × 10-4 |
14 | 217.9 | 1.123 × 10-3 | 0.7236 | 2803 | 1.986 × 10-3 | 0.9837 | 2.498 × 104 | 5.29 × 10-5 |
21 | 194.6 | 1.256 × 10-3 | 0.9329 | 3335 | 2.094 × 10-3 | 0.9388 | 4.088 × 104 | 2.60 × 10-4 |
28 | 176.4 | 1.128 × 10-3 | 0.6510 | 3369 | 2.650 × 10-3 | 0.9950 | 4.182 × 104 | 5.06 × 10-4 |
Table 4 Parameters derived from EIS data of Cu-free steel and Cu-added steel after immersions in SRB-incubated soil solution
Time (d) | Rs (Ω cm2) | Yf (S sn cm-2) | nf | Rf (Ω cm2) | Ydl (S sn cm-2) | ndl | Rct (Ω cm2) | ∑χ |
---|---|---|---|---|---|---|---|---|
Cu-free steel | ||||||||
1 | 353.3 | - | - | - | 1.170 × 10-4 | 0.8508 | 7.782 × 104 | 5.12 × 10-4 |
3 | 318.7 | - | - | - | 1.072 × 10-4 | 0.8902 | 1.443 × 104 | 6.13 × 10-4 |
5 | 291.0 | - | - | - | 1.261 × 10-4 | 0.8857 | 2.797 × 104 | 9.69 × 10-4 |
7 | 281.4 | - | - | - | 1.577 × 10-4 | 0.8396 | 3.644 × 104 | 7.85 × 10-4 |
14 | 227.4 | 8.017 × 10-4 | 0.7838 | 25.47 | 6.945 × 10-4 | 0.8598 | 1.290 × 104 | 9.64 × 10-5 |
21 | 202.7 | 7.521 × 10-4 | 0.9547 | 11.59 | 8.729 × 10-4 | 0.8511 | 2.699 × 104 | 1.19 × 10-4 |
28 | 180.2 | 7.756 × 10-4 | 0.9873 | 7.153 | 9.662 × 10-4 | 0.8447 | 3.642 × 104 | 2.08 × 10-4 |
Cu-added steel | ||||||||
1 | 336.7 | - | - | - | 1.202 × 10-4 | 0.8096 | 5.465 × 104 | 5.74 × 10-4 |
3 | 311.7 | - | - | - | 7.821 × 10-5 | 0.8763 | 4.314 × 104 | 1.34 × 10-3 |
5 | 278.2 | - | - | - | 6.829 × 10-5 | 0.8613 | 6.920 × 104 | 7.08 × 10-4 |
7 | 275.6 | - | - | - | 1.856 × 10-4 | 0.7191 | 6.015 × 104 | 7.22 × 10-4 |
14 | 217.9 | 1.123 × 10-3 | 0.7236 | 2803 | 1.986 × 10-3 | 0.9837 | 2.498 × 104 | 5.29 × 10-5 |
21 | 194.6 | 1.256 × 10-3 | 0.9329 | 3335 | 2.094 × 10-3 | 0.9388 | 4.088 × 104 | 2.60 × 10-4 |
28 | 176.4 | 1.128 × 10-3 | 0.6510 | 3369 | 2.650 × 10-3 | 0.9950 | 4.182 × 104 | 5.06 × 10-4 |
Fig. 7 SEM images of surface morphologies of Cu-free steel a, Cu-added steel c after 28 days immersion in the SRB-incubated soil solution; b, d magnified images of a, c, respectively
Steels | Fe | C | O | S | Cu | Al | Si | Mn |
---|---|---|---|---|---|---|---|---|
Cu-free steel | 49.74 | 14.78 | 26.88 | 5.25 | - | 1.25 | 1.59 | 0.5 |
Cu-added steel | 76.45 | 9.12 | 8.79 | 3.32 | 2.00 | - | 0.32 | - |
Table 5 Quantitative analysis results of films formed on Cu-free steel and Cu-added steel surfaces (wt%)
Steels | Fe | C | O | S | Cu | Al | Si | Mn |
---|---|---|---|---|---|---|---|---|
Cu-free steel | 49.74 | 14.78 | 26.88 | 5.25 | - | 1.25 | 1.59 | 0.5 |
Cu-added steel | 76.45 | 9.12 | 8.79 | 3.32 | 2.00 | - | 0.32 | - |
Fig.9 EPMA mapping data of the cross section of corrosion products on Cu-free steel a, Cu-added steel b after 28 days immersion in SRB-incubated soil solution
Fig. 10 SEM images of surface morphologies of Cu-free steel a, Cu-added steel b after 28 days immersion in the SRB-incubated soil solution after removing biofilm and corrosion products
Fig. 11 Maximum pit depths and the corresponding data (red line) on the surface of Cu-free steel a, b, Cu-added steel c, d after 28 days immersion in the SRB-incubated soil solution
[1] | S. Li, Y. Kim, K. Jeon, Y. Kho, Met. Mater.6, 281 (2000) |
[2] | T. Wu, M. Yan, D. Zeng, J. Xu, C. Yu, C. Sun, W. Ke, Acta Metall. Sin. -Engl. Lett. 28, 93 (2014) |
[3] | S.S. Al-Jaroudi, A. Ul-Hamid, M.M. Al-Gahtani, Corros. Eng. Sci. Technol. 46, 568 (2013) |
[4] | L. El-Bassi, I. Ziadi, S. Belgacem, L. Bousselmi, H. Akrout, Int. Biodeterior. Biodegrad. 150, 104960 (2020) |
[5] | H.A. Videla, Int. Biodeterior. Biodegrad. 49, 259 (2002) |
[6] | T.R. Jack, M.J. Wilmott, R.L. Sutherby, R.G. Worthingham, Mater. Perform. 35, 18 (1996) |
[7] | R. Javaherdashti,Microbiologically Influenced Corrosion (Springer, 2017), pp.29-79 |
[8] | R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137, 42 (2019) |
[9] | X. Zhai, K. Li, F. Guan, C. Sun, J. Duan, B. Hou, Surf. Coat. Technol. 344, 259 (2018) |
[10] | J. Liu, R. Jia, E. Zhou, Y. Zhao, W. Dou, D. Xu, K. Yang, T. Gu, Int. Biodeterior. Biodegrad. 132, 132 (2018) |
[11] | X. Shi, W. Yan, D. Xu, M. Yan, C. Yang, Y. Shan, K. Yang, J. Mater. Sci. Technol. 34, 2480 (2018) |
[12] | K. Yang, X.B. Shi, W. Yan, Y.P. Zeng, Y.Y. Shen, Y. Ren, Acta Metall. Sin. 56, 385 (2020) |
[13] | P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater. Sci. Technol. 33, 723 (2017) |
[14] | D. Sun, D. Xu, C. Yang, J. Chen, M.B. Shahzad, Z. Sun, J. Zhao, T. Gu, K. Yang, G. Wang, Mater. Sci. Eng. C 69, 744 (2016) |
[15] | J. Xia, C.G. Yang, D.K. Xu, D. Sun, L. Nan, Z.Q. Sun, Q. Li, T.Y. Gu, K. Yang,Biofouling 31, 481 (2015) |
[16] | S. Zhang, C. Yang, G. Ren, L. Ren,Mater. Technol. 30(sup6), B126 (2015) |
[17] | H. Liu, D. Xu, K. Yang, H. Liu, Y.F. Cheng, Corros. Sci. 132, 46 (2018) |
[18] | H. Yu, Z. Li, Y. Xia, Y. Qi, Y. Li, Q. Liu, C. Chen, Anti-Corros. Methods Mater. 68, 302 (2021) |
[19] | X. Shi, W. Yan, M. Yan, W. Wang, Z. Yang, Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 30, 601 (2017) |
[20] | D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34, 1325 (2018) |
[21] | S. Chongdar, G. Gunasekaran, P. Kumar, Electrochim. Acta 50, 4655 (2005) |
[22] | P.B. Raja, M. Fadaeinasab, A.K. Qureshi, A.A. Rahim, H. Osman, M. Litaudon, K. Awang, Ind. Eng. Chem. 52, 10582 (2013) |
[23] | J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun, S. Chen, Corros. Sci. 112, 552 (2016) |
[24] | R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130, 1 (2018) |
[25] | W. Dou, R. Jia, P. Jin, J. Liu, S. Chen, T. Gu, Corros. Sci. 144, 237 (2018) |
[26] | S. Yuan, B. Liang, Y. Zhao, S.O. Pehkonen, Corros. Sci. 74, 353 (2013) |
[27] | J.D. Slatter, M.C. Davidson, J.P. Grapiglia, W.T. Wong, Mater. Perform. 32, 35 (1993) |
[28] | L. Nan, J. Cheng, K. Yang, J. Mater. Sci. Technol. 28, 1067 (2012) |
[29] | X. Zhang, C. Yang, K. Yang, A.C.S. Appl, Mater. Interfaces 12, 361 (2020) |
[30] | X. Chen, G. Wang, F. Gao, Y. Wang, C. He, Corros. Sci. 101, 1 (2015) |
[31] | A.J. Wikiel, I. Datsenko, M. Vera, W. Sand,Bioelectrochemistry 97, 52 (2014) |
[32] | L. Yin, D. Xu, C. Yang, T. Xi, X. Chen, K. Yang, Corros. Sci. 179, 109141 (2021) |
[33] | T.M.P. Nguyen, X. Sheng, Y.P. Ting, S.O. Pehkonen, Ind. Eng. Chem. 47, 4703 (2008) |
[34] | A.M. Mostafa, E.A. Mwafy, M.S. Hasanin, Opt. Laser Technol. 121, 105824 (2020) |
[35] | D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91, 74 (2014) |
[36] | F. Batmanghelich, L. Li, Y. Seo, Corros. Sci. 121, 94 (2017) |
[37] | H. Liu, D. Xu, A.Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci. 101, 84 (2015) |
[38] | L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du, X.G. Li, Corros. Sci. 174, 100842 (2020) |
[39] | T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol. 35, 631 (2019) |
[40] | M. Alizadeh, S. Bordbar, Corros. Sci. 70, 170 (2013) |
[41] | Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, H.C. Shih, Corros. Sci. 47, 1001 (2005) |
[42] | Y.S. Choi, J.G. Kim,Corrosion 56, 11202 (2000) |
[43] | K. Baba, D. Mizuno, K. Yasuda, H. Nakamichi, N. Ishikawa,Corrosion 72, 1107 (2016) |
[44] | G. Cao, G. Li, S. Chen, W. Chang, X. Chen, J. Mater. Eng.9, 62 (2011) |
[1] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[2] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[3] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[4] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[5] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[6] | Hongchang Qian, Shangyu Liu, Wenlong Liu, Pengfei Ju, Dawei Zhang. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 201-211. |
[7] | Jiahe Mei, Ying Han, Guoqing Zu, Weiwei Zhu, Yu Zhao, Hua Chen, Xu Ran. Achieving Superior Strength and Ductility of AlSi10Mg Alloy Fabricated by Selective Laser Melting with Large Laser Power and High Scanning Speed [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1665-1672. |
[8] | Zhen Lu, Chengcai Zhang, Nana Deng, Haiping Zhou, Ruirui Fang, Kuidong Gao, Yukuo Su, Hongbin Zhang. Influence of Selective Laser Melting Process Parameters on Microstructure and Properties of a Typical Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1673-1687. |
[9] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[10] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[11] | Jian Han, Jun Wang, Sunusi Marwana Manladan, Yangchuan Cai, Qian Wang, Zhixiong Zhu, Lisong Zhu, Lianzhong Lu, Zhengyi Jiang. Effect of Lüders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 657-667. |
[12] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[13] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[14] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
[15] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||