Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (4): 388-398.DOI: 10.1007/s40195-016-0400-7
• Orginal Article • Previous Articles Next Articles
M. Krupska1, N.-T. H. Kim-Ngan1(), S. Sowa1, M. Paukov1, I. Tkach2, D. Drozdenko2, L. Havela2, Z. Tarnawski3
Received:
2015-11-11
Revised:
2015-12-23
Online:
2016-03-16
Published:
2016-04-27
M. Krupska, N.-T. H. Kim-Ngan, S. Sowa, M. Paukov, I. Tkach, D. Drozdenko, L. Havela, Z. Tarnawski. Structure, Electrical Resistivity and Superconductivity of Low-alloyed γ-U Phase Retained to Low Temperatures by Means of Rapid Cooling[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(4): 388-398.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Photograph of the bulk ingot with a mass of ≈300 mg (left) prepared by the arc furnace and the resulting splat-cooled sample disk (right) produced by HV splat cooler
Fig. 2 EBSD crystallographic orientation map a and the Kikuchi pattern b highlighting the surface microstructure of the splat-cooled U-12 at.% Mo alloy which identified only γ-U phase and UC (small black areas) with no evidence for α-U or α-U-related phases
Fig. 3 XRD patterns of the as-formed splat-cooled U-Pt alloys a and U-Nb alloys b. Each curve was normalized to the maximal intensity of the most intense peak at 2θ = 36°-37° and then shifted upwards with respect to that of pure U splat. The color vertical ticks indicate the main XRD patterns of orthorhombic (blue) and cubic (red) structures and of the surface impurities (black). The four main γ-reflections are also indicated
Fig. 4 XRD patterns of the as-formed splat-cooled U-Zr alloys shown as normalized ones a. The same notations of the color vertical ticks are used as those in Fig. 3. The enlarged low-angle XRD patterns b. For U-Zr splats, apart from surface impurities UO2 and UC, the peaks of spurious ZrC are observed
Fig. 5 Comparison of the most intense reflection in XRD patterns of U-T splats with 15 at.% T alloying [T = Mo, (Mo + Zr), Pt, Nb] in the as-formed state. Sharp γ-phase peaks and no trace of α-phase peaks were observed for only U-15 at.% Mo splat
Tcontent (at.%) | Type | a, c(Å) | ρ 300 K(µΩ cm) | ρ 4 K(µΩ cm) | T c (K) [ρ(T)] | ΔT ρ (K) | T c(K) [C(T)] | γ e[mJ/(K2mol)] | ΘD(K) |
---|---|---|---|---|---|---|---|---|---|
Pure U | α | 53 | 14 | 1.24 | 0.20 | 0.65 | 11.0 | 179 | |
15% Mo | γ | 3.441 | 89 | 95 | 2.11 | 0.02 | 2.11 | 16.0 | 139 |
15% Pt | γ | 3.469 | 164 | 166 | 0.95/0.61 | 0.08/0.04 | 0.75 | 19.5 | 145 |
15% Nb | γ 0 | 3.435 (a) 3.565(c) | 83 | 86 | 1.90 | 0.15 | 1.90 | 13.7 | 153 |
15% (Mo + Zr) | γ 0 | 3.431 (a) 3.482 (c) | |||||||
30% Zr | γ | 3.543 | 75 | 73 | 0.81 | 0.08 | 0.60 | 11.8 | 165 |
Table 1 Summary of low-temperature properties of U-T splat alloys: resistivity values at 300 K and at 4 K (ρ 300 K, ρ4 K), superconducting transition temperatures (T c) determined from the ρ(T) jump and/or from the specific heat C(T), the width of the superconducting transition in the resistivity (ΔT ρ ), the Sommerfeld coefficient of electronic specific heat (γ e) and Debye temperature (Θ D). The structure and lattice parameters (a, c) are also given
Tcontent (at.%) | Type | a, c(Å) | ρ 300 K(µΩ cm) | ρ 4 K(µΩ cm) | T c (K) [ρ(T)] | ΔT ρ (K) | T c(K) [C(T)] | γ e[mJ/(K2mol)] | ΘD(K) |
---|---|---|---|---|---|---|---|---|---|
Pure U | α | 53 | 14 | 1.24 | 0.20 | 0.65 | 11.0 | 179 | |
15% Mo | γ | 3.441 | 89 | 95 | 2.11 | 0.02 | 2.11 | 16.0 | 139 |
15% Pt | γ | 3.469 | 164 | 166 | 0.95/0.61 | 0.08/0.04 | 0.75 | 19.5 | 145 |
15% Nb | γ 0 | 3.435 (a) 3.565(c) | 83 | 86 | 1.90 | 0.15 | 1.90 | 13.7 | 153 |
15% (Mo + Zr) | γ 0 | 3.431 (a) 3.482 (c) | |||||||
30% Zr | γ | 3.543 | 75 | 73 | 0.81 | 0.08 | 0.60 | 11.8 | 165 |
Fig. 6 Temperature dependence of electrical resistivity (in zero field) of U-Mo splats in the normal state a and around the superconducting transition temperature b. For an easier comparison, the curves were normalized to respective resistivity values at T = 300 K and at T = 4 K. All U-Mo splats with the γ-U phase (≥11 at.% Mo doping) have a negative temperature coefficient (dρ/dT < 0). The pure single γ-U phase U-15% Mo splat has a highest critical temperature (T c = 2.11 K) and sharpest resistivity drop
Fig. 7 Temperature dependence of the normalized electrical resistivity in zero field of splat-cooled U-T splats having the γ-U phase compared with that of pure uranium splat a. All the alloys with 15 at.% T doping (T = Mo, Nb, Pt) have a negative dρ/dT, except for U-30 at.% Zr having a positive one. Superconducting phase transitions indicate by the abrupt resistivity drops in the range of 0.61-2.11 K b
Fig. 8 Specific-heat anomalies related the superconducting phase transition for selected U-T splats. A pronouncedλ-type specific-heat anomaly was observed only for U-15 at.% Mo splat consisting of single γ-U phase with ideal bcc A2 structure
[1] | I. Grenthe, J. Drozdzynski, T. Fujino, E.C. Buck, T.E.Albrecht-Schmitt, S.F.Wolf in The Chemistry of the Actinide and Transactinide Elements, vol. 1, ed. by L.R. Morss, N. Edelstein,J. Fuger, J.J. Katz(Springer, 2006), p. 253 |
[2] | H.L. Yakel, 12-14 February 1974 |
[3] | G. Aschermann, E. Justi, Phys. Z. 43, 207(1942) |
[4] | G.H. Lander, E.S. Fisher, S.D. Bader, Adv. Phys. 43, 1(1994) |
[5] | J.C. Lashley, J.C. Lashley, B.E. Lang, J. Boerio-Goates, B.F.Woodfield, G.M. Schmiedeshoff, E.C. Gay, C.C. Phys. Rev. B 63, 224510 (2001) |
[6] | D. Graf, R. Stillwell, T.P. Murphy, J.H. Park, M. Kano, E.C.Palm, P. Schlottmann, J. Bourg, K.N. Collar, J. Cooley, J.Lashley, J. Willit, S.W. Tozer, Phys. Rev. B 80, 241101R (2009) |
[7] | G.L. Hofman, M.K. Meyer, A.E. Ray,18-20 October 1998 |
[8] | V.P. Sinha, P.V. Hegde, G.J. Prasad, G.K. Dey, H.S. Kamath, J.Alloys Compd. 506, 253(2010) |
[9] | S. Van Den Berghe, A. Leenaers, E. Koonen, L. Sannen, Adv.Sci. Technol. 73, 78(2010) |
[10] | S. Van Den Berghe, P. Lemoine, Nucl. Eng. Technol. 46, 125(2014) |
[11] | M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C.Wiencek, J.L. Snelgrove, R.V. Strain, J. Nucl.Mater. 304, 221(2002) |
[12] | D.E. Burkes, R. Prabhakaran, T. Hartmann,Nucl. Eng. Des. 240, 1332(2010) |
[13] | J. Lisboa, J. Marin, M. Barrera, H. Pesenti, World J. Nucl. Sci.Technol. 5, 274(2015) |
[14] | B.S. Chandrasekhar, J.K. Hulm, J. Phys. Chem. Solids 7, 259(1958) |
[15] | T.G. Berlincourt, J. Phys. Chem. Solids 11, 12 (1959) |
[16] | H. Jones, Rep. Prog. Phys. 36, 1425(1973) |
[17] | R. Ray, E. Musso, U.S.21 Sept 1976 |
[18] | I. Tkach, J. Alloys Compd. 534, 101(2012) |
[19] | N.-T.H. Kim-Ngan, I. Tkach, S. Masˇkova, A.P. Goncalves, L.Havela, J. Alloys Compd. 580, 223(2013) |
[20] | G.C. Allen, P.M. Tucker, R.A. Lewis, J. Chem. Soc., Faraday Trans. II 80, 991 (1984) |
[21] | N.-T.H. Kim-Ngan, M. Paukov, S. Sowa, M. Krupska, I. Tkach,L. Havela, J. Alloys Compd. 645, 158(2015) |
[22] | A. Dommann, F. Hulliger, Solid State Commun. 65, 1093(1988) |
[23] | B.A.S. Bull. Alloy Ph. Diagr. 11, 240(1990) |
[24] | H. Kleykamp, Pure Appl. Chem. 63, 1401(1991) |
[25] | K. Tangri, D.K. Chaudhuri, J. Nucl. Mat. 15, 278(1965) |
[26] | M. Anagnostidis, M. Colombia, H. Monti, J. Nucl. Mat. 11, 67(1964) |
[27] | S. Dash, K. Ghoshal, T.R.G. J. Therm. Anal. Calorim.112, 179(2013) |
[28] | J.G. Huber, P.H. Ansari, Phys. B 135, 441 (1985) |
[29] | J.C. Slater, J. Chem. Phys. 41, 3199(1964) |
[30] | I. Tkach, Physica C 498, 14 (2014) |
[31] | N.-T.H. Kim-Ngan, S. Sowa, M. Krupska, M. Paukov, I. Tkach,L. Havela, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 015007(2015) |
[32] | N. Toyota, A. Inoue, K. Matsuzaki, T. Fukase, T. Masumoto, J.Phys. Soc. Jpn. 53, 924(1984) |
[33] | A. Slebarski, J. Goraus, J. Deniszczyk, L. Skoczen, J. Phys.:Condens. Matter 18, 10319 (2006) |
[34] | A. Otop, I. Maksimov, E.-W. Scheidt, J.A. Mydosh, S. Sullow,Physica B 378-380, 371 (2006) |
[35] | J.S. Dugdale, Contemp. Phys. 28, 547(1987) |
[36] | R.D. Barnard, Proc. Phys. Soc. 78, 722(1961) |
[37] | L.E. Phys. Rev.Lett. 51, 312(1983) |
[38] | O. Pena, Physica C 514, 95 (2015) |
[39] | I. Tkach, S. Maskova, Z. Matej, Phys. Rev. B 88, 060407R (2013) |
[40] | I. Tkach, M. Paukov, D. Drozdenko, M. Cieslar, B. Vondrackova,Z. Matej, D. Kriegner, A.V. Andreev, Phys. Rev. B 91, 115116 (2015) |
[41] | A.V. Andreev, S.M. Zadvorkin, M.I. Bartashevich, T. Goto, J.Kamarad, Z. Arnold, H. Drulis, J. Alloys Compd. 267, 32 (1998)398 M. Krupskaet al.: Acta Metall. Sin. (Engl. Lett.), 2016, 29(4), 388-398. |
[1] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[2] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[3] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[4] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[5] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[6] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[7] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[8] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[9] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Jing-Hua Liu, Jin-Jun Liu, Qiang Zheng, Bao-Ru Bian, Juan Du. In Situ Transmission Electron Microscopy Observations of the Growth Process of Fe3O4-Ag Nanoparticles [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1283-1288. |
[12] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[13] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[14] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[15] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||