Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (4): 399-408.DOI: 10.1007/s40195-016-0403-4

• Orginal Article • Previous Articles    

Arc Erosion Behavior of Cu-0.23Be-0.84Co Alloy after Heat Treatment: An Experimental Study

Yanjun Zhou1, Kexing Song2,3(), Jiandong Xing1, Zhou Li4, Xiuhua Guo2,3   

  1. 1 State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    2 Collaborative Innovation Center of Nonferrous Metals,Henan University of Science and Technology,Luoyang 471023, China
    3 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023,China
    4 School of Materials Science and Engineering, Central South;University, Changsha 410083, China
  • Received:2015-12-03 Revised:2016-01-29 Online:2016-03-16 Published:2016-04-27

Abstract:

The arc erosion behavior of Cu-0.23Be-0.84Co alloy after heat treatment was investigated experimentally by a JF04C electric contact test system. The arc duration, arc energy, contact resistance and contact pressure of Cu-0.23Be-0.84Co alloy after solution treatment and aging treatment were analyzed. The arc erosion morphologies were contrastively observed by a three-dimensional measuring system and scanning electron microscopy. For the Cu-0.23Be-0.84Co alloy in solution state and aging state, the maximum values of arc duration are 90 and 110 ms, and the arc energies are 15,000 and 18,000 mJ, respectively. The maximum value of the contact resistance of Cu-0.23Be-0.84Co alloy in different states is about 33 mΩ. The contact pressure of Cu-0.23Be-0.84Co alloy in solution state generally changes between 50 and 60 cN during whole make-and-break contacts, while in aging state, it has a larger fluctuation range. Moreover, the quality of moving contact (anode) decreases, while static contact (cathode) increases. The materials transfer from anode to cathode during make-and-break contacts. The total mass losses of Cu-0.23Be-0.84Co alloy in solution state and aging state are 3 and 1.2 mg, respectively. In addition, a number of discrete corrosion pits, molten droplet, porosity and cavity distribute on the surface of moving contact and static contact. The arc erosion model of Cu-0.23Be-0.84Co alloy in make-and-break contact was built. The arc erosion resistance of Cu-0.23Be-0.84Co alloy after heat treatment is closely related to the microstructure and the properties of contact materials. This experimental study is important to evaluate the anode or cathode electrocorrosion fatigue life.

Key words: Cu-Be-Co, alloy, Arc, erosion, Aging, Morphology