Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (4): 573-584.DOI: 10.1007/s40195-014-0095-6
• research-article • Previous Articles Next Articles
Jia Sun1,2, Yutuo Zhang1,2(), Pei Wang2(
), Zhongfei Ye2, Dianzhong Li2
Received:
2013-08-27
Revised:
2013-12-13
Online:
2014-08-25
Published:
2014-10-16
Jia Sun, Yutuo Zhang, Pei Wang, Zhongfei Ye, Dianzhong Li. Effect of N on the Microstructure and Mechanical Properties of High Si Martensitic Heat-Resistant Steels[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 573-584.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Si | Mn | W | V | Ta | C + N | N | Fe |
---|---|---|---|---|---|---|---|---|---|
x | 10.0 | 1.5 | 0.65 | 2.0 | 0.2 | 0.1 | 0.22 | y | Bal. |
Table 1 The designed chemical composition of the steel (wt%)
C | Cr | Si | Mn | W | V | Ta | C + N | N | Fe |
---|---|---|---|---|---|---|---|---|---|
x | 10.0 | 1.5 | 0.65 | 2.0 | 0.2 | 0.1 | 0.22 | y | Bal. |
Steel | C | Cr | Si | Mn | W | V | Ta | N | Fe |
---|---|---|---|---|---|---|---|---|---|
No. 1 | 0.22 | 9.65 | 1.55 | 0.62 | 1.79 | 0.21 | 0.09 | 0.023 | Bal. |
No. 2 | 0.21 | 9.48 | 1.57 | 0.68 | 1.79 | 0.21 | 0.10 | 0.047 | Bal. |
No. 3 | 0.13 | 9.63 | 1.40 | 0.72 | 1.70 | 0.26 | 0.05 | 0.11 | Bal. |
Table 2 The measured chemical composition of the experimental steels (wt%)
Steel | C | Cr | Si | Mn | W | V | Ta | N | Fe |
---|---|---|---|---|---|---|---|---|---|
No. 1 | 0.22 | 9.65 | 1.55 | 0.62 | 1.79 | 0.21 | 0.09 | 0.023 | Bal. |
No. 2 | 0.21 | 9.48 | 1.57 | 0.68 | 1.79 | 0.21 | 0.10 | 0.047 | Bal. |
No. 3 | 0.13 | 9.63 | 1.40 | 0.72 | 1.70 | 0.26 | 0.05 | 0.11 | Bal. |
Fig. 14 The tensile strength of No. 1, No. 2, and No. 3 steels tempered at different temperatures: a yield strength Rp0.2; b tensile strength Rm; c elongation
Fig. 17 Approximate maximum and minimum total content of (Cr23C6 + Cr2N + TaC + VN + TaN) during tempering at 700–800 °C as function of N content according to the mass phase fraction diagrams in Fig. 16
[1] | J.S. Zhang, N. Li, J. Nucl. Mater. 373, 351(2008)10.1016/j.jnucmat.2007.06.019 |
[2] | A.L. Johnson, E.P. Loewen, T.T. Ho, J. Nucl. Mater. 350, 221(2006)10.1016/j.jnucmat.2005.12.007 |
[3] | D. Koury, A.L. Johnson, J. Welch, J.W. Farley, J. Nucl. Mater. 429, 210(2012)10.1016/j.jnucmat.2012.05.041 |
[4] | P. Hosemann, R. Dickerson, P. Dickerson, N. Li, S.A. Maloy, Corros. Sci. 66, 196(2013)10.1016/j.corsci.2012.09.019 |
[5] | J.S. Zhang, N. Li, Y.T. Chen, A.E. Rusanov, J. Nucl. Mater. 336, 1(2005)10.1016/j.jnucmat.2004.08.002 |
[6] | A. Hojna, F.D. Gabriele, J. Nucl. Mater. 413, 21(2011)10.1016/j.jnucmat.2011.03.044 |
[7] | C. Schroer, Z. Voss, O. Wedemeyer, J. Novotny, J. Konys, J. Nucl. Mater. 356, 189(2006)10.1016/j.jnucmat.2006.05.009 |
[8] | J. Van den Bosch, D. Sapundjiev, A. Almazouzi, J. Nucl. Mater. 356, 237(2006)10.1016/j.jnucmat.2006.05.034 |
[9] | Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, W.S. Ryu, J. Nucl. Mater. 400, 94(2010)10.1016/j.jnucmat.2010.02.016 |
[10] | P. Hosemann, J.G. Swadener, J. Welch, N. Li, J. Nucl. Mater. 377, 201(2008)10.1016/j.jnucmat.2008.02.073 |
[11] | Y. Kurata, J. Nucl. Mater. 437, 401(2013)10.1016/j.jnucmat.2013.02.022 |
[12] | J. Van den Bosch, G. Coen, P. Hosemann, S.A. Maloy, J. Nucl. Mater. 429, 105(2012)10.1016/j.jnucmat.2012.05.017 |
[13] | J. Van de Bosch, P. Hosemann, A. Almazouzi, S.A. Maloy, J. Nucl. Mater. 398, 116(2010)10.1016/j.jnucmat.2009.10.020 |
[14] | S.A. Bashu, K. Singh, M.S. Rawat, Mater. Sci. Eng. A l27, 7(1990)10.1016/0921-5093(90)90184-5 |
[15] | P. Hu, W. Yan, L.F. Deng, W. Sha, Y.Y. Shan, K. Yang, Fusion Eng. Des. 85, 1632(2010)10.1016/j.fusengdes.2010.04.066 |
[16] | D. Preininger, J. Nucl. Mater. 307–311, 514(2002)10.1016/S0022-3115(02)01210-2 |
[17] | U.E. Klotz, C. Solenthaler, P.J. Uggowitzer, Mater. Sci. Eng. A 476, 186(2008)10.1016/j.msea.2007.04.093 |
[18] | K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.J. Moon, S. Ozaki, Mater. Sci. Eng. A 374, 82(2004)10.1016/j.msea.2003.12.065 |
[19] | Z.X. Xia, C. Zhang, Z.G. Yang, Mater. Sci. Eng. A 528, 6764(2011)10.1016/j.msea.2011.05.084 |
[20] | B.S. Srinivas Prasad, V.B. Rajkumar, K.C. Hari Kumar, Calphad 36, 1(2012)10.1016/j.calphad.2011.10.006 |
[21] | K. Maruyama, K. Sawada, J.I. Koike, ISIJ Int. 41, 641(2001)10.2355/isijinternational.41.641 |
[22] | X.C. Hao, M. Gao, L. Zhang, X.J. Zhao, K. Liu, Acta Metall. Sin. 47, 912(2011) |
[23] | Q.X. Dai, Z.Z. Yuan, X.M. Luo, X.N. Cheng, Mater. Sci. Eng. A 385, 445(2004)10.1016/j.msea.2004.07.003 |
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[4] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[5] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[6] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[7] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[8] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. |
[9] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[10] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[12] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[13] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[14] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[15] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||