Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2243-2264.DOI: 10.1007/s40195-025-01927-w
Previous Articles Next Articles
Xiangru Guo1,2, Jian Zhang1,2, Tieqiang Kong1,2, Junjie Shen1,2, Qingjian Liu1,2, Chaoyang Sun3(
), Peipei Li3(
)
Received:2025-03-25
Revised:2025-06-16
Accepted:2025-06-24
Online:2025-12-10
Published:2025-10-21
Contact:
Chaoyang Sun, suncy@ustb.edu.cn;Peipei Li, lipeipei@ustb.edu.cn
Xiangru Guo, Jian Zhang, Tieqiang Kong, Junjie Shen, Qingjian Liu, Chaoyang Sun, Peipei Li. Unraveling the Discontinuous Dynamic Recrystallization of the TC17 Titanium Alloy during Hot Deformation by Crystal Plasticity Modeling[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2243-2264.
Add to citation manager EndNote|Ris|BibTeX
| Al | Mo | Cr | Sn | Zr | Ti |
|---|---|---|---|---|---|
| 5.0 | 4.0 | 3.9 | 2.1 | 2.2 | Bal. |
Table 1 Chemical composition of TC17 titanium alloy
| Al | Mo | Cr | Sn | Zr | Ti |
|---|---|---|---|---|---|
| 5.0 | 4.0 | 3.9 | 2.1 | 2.2 | Bal. |
Fig. 1 Hot compression experiments of TC17 titanium alloy under different loading conditions: a schematic of hot deformation procedure, b experimental setup
Fig. 2 IPF maps, phase diagrams and grain size charts for: a1, b1, c1 initial samples, a2, b2, c2 samples held at 700 °C for 5 min, a3, b3, c3 samples held at 1000 °C for 5 min
Fig. 4 Schematic diagram of DDRX mechanisms in TC17 titanium alloy during hot deformation. The black lines represent grain boundaries, light gray areas indicate the α phase, dark gray areas represent the β phase, and yellow grains symbolize RGs
| Physical meaning | Symbol | Value | References | |
|---|---|---|---|---|
| Elastic constants (α-Ti) (GPa) | C11, C12, C13, C33, C44 | 160, 86, 55, 183, 54 | [ | |
| Elastic constants (β-Ti) (GPa) | C11, C12, C44 | 130.2, 70.6, 45.8 | [ | |
| Reference shear strain rate (s−1) | $\dot{\gamma }_{0}$ | 0.001 | [ | |
| Strain rate sensitivity exponent | m | 0.08 | [ | |
| Number of slip systems | Ns | 3 (α), 12 (β) | [ | |
| Magnitude of Burgers vector (nm) | b | 0.295 (α) | [ | |
| 0.286 (β) | ||||
| Diffusion activation energy (J mol−1) | Qdiffu | 150 × 103 | [ | |
| Ideal gas constant (J K−1 mol−1) | R | 8.314 | [ | |
| Boltzmann constant (J K−1) | KB | 1.38 × 10-23 | [ | |
| Activated energy for deformation (J mol−1) | Qdeform | 150 × 103 | [ | |
| Poisson’s ratio | ν | 0.3 | [ | |
| Critical temperature for phase transition (°C) | Tβ | 890 | [ | |
| Interaction coefficients for slip | Aαα´ | I: 0.122, II: 0.122, III: 0.625, IV: 0.07, V: 0.137, VI: 0.122 | [ | |
| Activated energy for nucleation (J mol−1) | Qact | 140 × 103 | [ | |
| Melting point temperature (°C) | Tm | 1640 | [ | |
| Product of boundary thickness and diffusion coefficient (m3 s−1) | δD0b | 2.0 × 10-13 | [ | |
| Initial dislocation density (m−2) | ρ0 | 9.0 × 1013 (700 °C), 1.7 × 1013 (800 °C), 1.0 × 1013 (900 °C), 1.5 × 1012 (1000 °C) | ||
| Initial grain size (µm) | r0 | 2.5 ( 700 °C), 6 (800 °C), 20 (900 °C), 55 (1000 °C) | ||
| Dynamic recovery coefficient | $k_{{\text{M}}}^{\alpha }$, $k_{{\text{R}}}^{\alpha }$ | 2.0 × 10-5, 1.0 × 10-4 | ||
Table 2 Model constants with physical meanings
| Physical meaning | Symbol | Value | References | |
|---|---|---|---|---|
| Elastic constants (α-Ti) (GPa) | C11, C12, C13, C33, C44 | 160, 86, 55, 183, 54 | [ | |
| Elastic constants (β-Ti) (GPa) | C11, C12, C44 | 130.2, 70.6, 45.8 | [ | |
| Reference shear strain rate (s−1) | $\dot{\gamma }_{0}$ | 0.001 | [ | |
| Strain rate sensitivity exponent | m | 0.08 | [ | |
| Number of slip systems | Ns | 3 (α), 12 (β) | [ | |
| Magnitude of Burgers vector (nm) | b | 0.295 (α) | [ | |
| 0.286 (β) | ||||
| Diffusion activation energy (J mol−1) | Qdiffu | 150 × 103 | [ | |
| Ideal gas constant (J K−1 mol−1) | R | 8.314 | [ | |
| Boltzmann constant (J K−1) | KB | 1.38 × 10-23 | [ | |
| Activated energy for deformation (J mol−1) | Qdeform | 150 × 103 | [ | |
| Poisson’s ratio | ν | 0.3 | [ | |
| Critical temperature for phase transition (°C) | Tβ | 890 | [ | |
| Interaction coefficients for slip | Aαα´ | I: 0.122, II: 0.122, III: 0.625, IV: 0.07, V: 0.137, VI: 0.122 | [ | |
| Activated energy for nucleation (J mol−1) | Qact | 140 × 103 | [ | |
| Melting point temperature (°C) | Tm | 1640 | [ | |
| Product of boundary thickness and diffusion coefficient (m3 s−1) | δD0b | 2.0 × 10-13 | [ | |
| Initial dislocation density (m−2) | ρ0 | 9.0 × 1013 (700 °C), 1.7 × 1013 (800 °C), 1.0 × 1013 (900 °C), 1.5 × 1012 (1000 °C) | ||
| Initial grain size (µm) | r0 | 2.5 ( 700 °C), 6 (800 °C), 20 (900 °C), 55 (1000 °C) | ||
| Dynamic recovery coefficient | $k_{{\text{M}}}^{\alpha }$, $k_{{\text{R}}}^{\alpha }$ | 2.0 × 10-5, 1.0 × 10-4 | ||
| Symbol | Value | Symbol | Value |
|---|---|---|---|
| c0 | 0.15 | c9 | 0.1 |
| c1 | 1 × 103 | c10 | 2.0 × 10-6 |
| c2 | 0.5 [12] | c11 | 2.2 |
| c3 | 1.2 × 104 | ω | 0.24 |
| c4 | 1.1 | $k_{1}^{\alpha }$ | 0.025 |
| c5 | 5 × 10-5 | θ | − 3 × 10-4 |
| c6 | 8.5 × 103 | nα | 2 |
| c7 | 0.16 | $k_{{\text{M}}}^{\alpha }$ | 2.0 × 10-5 |
| c8 | 10 | $k_{{\text{R}}}^{\alpha }$ | 1.0 × 10-4 |
Table 3 Parameters determined by fitting experimental data
| Symbol | Value | Symbol | Value |
|---|---|---|---|
| c0 | 0.15 | c9 | 0.1 |
| c1 | 1 × 103 | c10 | 2.0 × 10-6 |
| c2 | 0.5 [12] | c11 | 2.2 |
| c3 | 1.2 × 104 | ω | 0.24 |
| c4 | 1.1 | $k_{1}^{\alpha }$ | 0.025 |
| c5 | 5 × 10-5 | θ | − 3 × 10-4 |
| c6 | 8.5 × 103 | nα | 2 |
| c7 | 0.16 | $k_{{\text{M}}}^{\alpha }$ | 2.0 × 10-5 |
| c8 | 10 | $k_{{\text{R}}}^{\alpha }$ | 1.0 × 10-4 |
Fig. 5 a Initial grain size after 5 min of holding, b initial volume fraction of α phase under different temperatures, c dislocation density after 5-min holding
Fig. 7 IPFs and microstructure angles under different temperature and strain rate loading conditions: a T = 700 °C, strain rate = 0.01 s−1; b T = 700 °C, strain rate = 1 s−1; c T = 800 °C, strain rate = 0.01 s−1; d T = 800 °C, strain rate = 1 s−1; e T = 900 °C, strain rate = 0.01 s−1; f T = 900 °C, strain rate = 1 s−1; g microstructure angle curves at different temperatures; h T = 1000 °C, strain rate = 1 s−1
Fig. 8 KAM maps under different temperature conditions with a strain rate of 1 s−1: a1 at 700 °C in the MG, a2 at 700 °C in the RG, b1 at 1000 °C in the MG, b2 at 700 °C in the RG, a3 IQ + GOS map under the condition of 700 °C, b3 a magnified view of a3 and the corresponding phase diagram
Fig. 9 Mechanical responses of TC17 titanium alloy under different temperatures and strain rates loading conditions: a 700 °C, b 800 °C, c 900 °C, d 1000 °C
Fig. 10 Evolution of the dislocation density in the MGs, RGs and the critical dislocation density (ρc) in TC17 titanium alloy under different temperatures and strain rates: a 700 °C, b 800 °C, c 900 °C, d 1000 °C
Fig. 11 Nuclei generated in unit surface area (1 µm2) of TC17 titanium alloy under different temperatures and strain rates: a 700 °C, b 800 °C, c 900 °C, d 1000 °C
Fig. 13 a RG size (Exp), b MG size (Exp), c RG size (Sim), d MG size (Sim) in hot compressed TC17 titanium alloy at different temperatures and strain rates
Fig. 14 Stress distribution under different temperature conditions: a 700 °C, b 800 °C, c 900 °C, d 1000 °C. The calculation conditions are performed under a constant strain of 0.8 and a strain rate of 1 s−1
Fig. 15 Recrystallization distribution under different temperatures and strain: a1 at a strain of 0.4 and temperature of 700 °C; a2 at a strain of 0.8 and temperature of 700 °C; b1 at a strain of 0.4 and temperature of 1000 °C; b2 at a strain of 0.8 and temperature of 1000 °C
Fig. 17 Dislocation density distribution in the RGs under various temperature conditions: a 700 °C, b 800 °C, c 900 °C, d 1000 °C. The calculations are performed under a constant strain of 0.8 and a strain rate of 1 s−1
Fig. 18 Dislocation density distribution in the MGs under various temperature conditions: a 700 °C, b 800 °C, c 900 °C, d 1000 °C. The calculations are performed under a constant strain of 0.8 and a strain rate of 1 s−1
| [1] |
D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)
DOI URL |
| [2] |
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5, 419 (2003)
DOI URL |
| [3] | S.L. Semiatin, Metall. Mater. Trans. A 51, 2593 (2020) |
| [4] |
M. Wang, N. Qu, Chinese J. Aeronaut. 35, 280 (2022)
DOI URL |
| [5] |
M. Zhang, J. Zhang, D.L. McDowell, Int. J. Plast. 23, 1328 (2007)
DOI URL |
| [6] | A. Das, C.A. Chatham, J.J. Fallon, C.E. Zawaski, E.L. Gilmer, C.B. Williams, M.J. Bortner, Additive Manuf. 34, 101218 (2020) |
| [7] | L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, G.S. Wang, Mater. Sci. Eng. A 505, 136 (2009) |
| [8] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014)
DOI URL |
| [9] |
A.S. Khan, R. Kazmi, B. Farrokh, Int. J. Plast. 23, 931 (2007)
DOI URL |
| [10] | G. Science, Mater. Sci. Eng. A 243, 32 (1998) |
| [11] |
H. Li, C. Wu, H. Yang, Int. J. Plast. 51, 271 (2013)
DOI URL |
| [12] |
H. Li, X. Sun, H. Yang, Int. J. Plast. 87, 154 (2016)
DOI URL |
| [13] | X.G. Fan, H. Yang, Int. J. Plast. 27, 1833 ( 2011) |
| [14] |
R. Ding, Z.X. Guo, Acta Mater. 49, 3163 (2001)
DOI URL |
| [15] |
D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson, Acta Mater. 57, 5218 (2009)
DOI URL |
| [16] | G. Sharma, J. Varshney, A.C. Bidaye, J.K. Chakravartty, Mater. Sci. Eng. A 539, 324 (2012) |
| [17] |
W. An, C. Liu, Q. Xiong, Z. Li, X. Huang, T. Suo, Int. J. Plast. 165, 103616 (2023)
DOI URL |
| [18] | R.C. Picu, A. Majorell, Mater. Sci. Eng. A 326, 306 (2002) |
| [19] |
B. Guo, S.L. Semiatin, J.J. Jonas, S. Yue, J. Mater. Sci. 53, 9305 (2018)
DOI |
| [20] |
C.J. Lu, L.J. Huang, L. Geng, B. Kaveendran, Z.Z. Zheng, J. Zhang, Mater. Charact. 104, 139 (2015)
DOI URL |
| [21] | F. Ma, W. Lu, J. Qin, D. Zhang, Mater. Sci. Eng. A 416, 59 (2006) |
| [22] |
J. Yang, Z. Gao, Y. Liang, Y. Wu, J. Li, R. Hu, J. Mater. Res. Technol. 11, 1135 (2021)
DOI URL |
| [23] |
E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Int. J. Plast. 47, 202 (2013)
DOI URL |
| [24] |
S. Zhang, Y.C. Lin, Y.Q. Jiang, Z.C. Huang, H.B. Ding, Y.L. Qiu, M. Naseri, E. Trofimov, J. Alloys Compd. 987, 174191 (2024)
DOI URL |
| [25] | S. Zhang, Y.C. Lin, D.G. He, Y.Q. Jiang, H.J. Zhang, N.F. Zeng, G.C. Wu, M. Naseri, Intermetallics 170, 108333 (2024) |
| [26] |
G.C. Wu, Y.C. Lin, M.S. Chen, W. Qiu, N.F. Zeng, S. Zhang, M. Wan, D.G. He, Y.Q. Jiang, M. Naseri, J. Alloys Compd. 1002, 175293 (2024)
DOI URL |
| [27] |
H. Zhang, Y.C. Lin, G. Su, Y. Xie, W. Qiu, N. Zeng, S. Zhang, G. Wu, J. Mater. Res. Technol. 34, 1591 (2025)
DOI URL |
| [28] | Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan, Mater. Sci. Eng. A 635, 77 (2015) |
| [29] |
T. Tang, G. Zhou, Z. Li, D. Li, L. Peng, Y. Peng, P. Wu, H. Wang, M.G. Lee, Int. J. Plast. 116, 159 (2019)
DOI URL |
| [30] |
M. Zecevic, R.A. Lebensohn, R.J. McCabe, M. Knezevic, Acta Mater. 164, 530 (2019)
DOI URL |
| [31] |
M. Zecevic, M. Knezevic, B. McWilliams, R.A. Lebensohn, Int. J. Plast. 130, 102705 (2020)
DOI URL |
| [32] |
L. Li, J. Liu, N. Ding, M. Li, Chin. J. Aeronaut. 36, 573 (2023)
DOI URL |
| [33] |
L. Li, M.Q. Li, J. Luo, Acta Mater. 94, 36 (2015)
DOI URL |
| [34] | Y. Ito, S. Murakami, N. Tsuji, Metall. Mater. Trans. A 48, 4237 (2017) |
| [35] | P. Zhao, Y. Tao, K. Fang, M. Guo, Q. Chu, J. Tao, Q. Yuan, Y. Li, Mater. Sci. Eng. A 854, 143880 (2022) |
| [36] | Y. Liu, Z. Li, B. Zhao, C. Sun, Y. Feng, Mater. Sci. Eng. A 879, 145264 (2023) |
| [37] | Y.Y. Zong, D.B. Shan, M. Xu, Y. Lv, J. Mater. Process. Technol. 209, 1988 ( 2009) |
| [38] | X. Wei, Y. Liu, Y. Yu, X. Zhang, P. Hodgson, Mater. Sci. Eng. A 833, 142533 (2022) |
| [39] |
B. Guo, J.J. Jonas, J. Alloys Compd. 884, 161179 (2021)
DOI URL |
| [40] |
Y. Yu, H. Yan, J. Chen, W. Xia, B. Su, T. Ding, Z. Li, M. Song, J. Alloys Compd. 912, 165260 (2022)
DOI URL |
| [41] |
Z. Li, Q. Kang, X. Xu, C. Wang, S. Luo, G. Wang, J. Mater. Res. Technol. 25, 183 (2023)
DOI URL |
| [42] | R.J. Asaro, J.R. Rice, J. Mech. Phys. Solids 25, 309 (1977) |
| [43] | S.R. Kalidindi, C.A. Bronkhorst, L. Anand, J. Mech. Phys. Solids 40, 537 (1992) |
| [44] |
D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 30, 1087 (1982)
DOI URL |
| [45] | D. Mclean,Grain Boundaries in Metals (Oxford University Press, Oxford, 1957) |
| [46] | M. Zouari, N. Bozzolo, R.E. Loge, Mater. Sci. Eng. A 655, 408 (2016) |
| [47] | X. Zhong, L. Huang, L. Wang, F. Liu, X. Dong, Z. Zhang, Trans. Nonferrous Met. Soc. China 28, 2294 (2018) |
| [48] |
D.G. Cram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, C.R. Hutchinson, Acta Mater. 60, 6390 (2012)
DOI URL |
| [49] |
C.K.C. Lieou, H.M. Mourad, C.A. Bronkhorst, Int. J. Plast. 119, 171 (2019)
DOI URL |
| [50] |
J. Luo, M. Li, X. Li, Y. Shi, Mech. Mater. 42, 157 (2010)
DOI URL |
| [51] | J. Ma, W. Zhang, W. Wang, C. Li, W. Chen, C. Cui, J. Yang, G. Cui, Mater. Sci. Eng. A 838, 142819 (2022) |
| [52] |
G. Zhou, Z. Li, D. Li, Y. Peng, H.S. Zurob, P. Wu, Int. J. Plast. 91, 48 (2017)
DOI URL |
| [53] |
I.J. Beyerlein, C.N. Tomé, Int. J. Plast. 24, 867 (2008)
DOI URL |
| [54] |
M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, R.H. Wagoner, Int. J. Plast. 26, 925 (2010)
DOI URL |
| [55] | G.I. Taylor, J. Inst. Metals 62, 307 (1938) |
| [56] | H. Mecking, Acta Mater. 29, 1865 ( 1981) |
| [57] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48, 171 (2003)
DOI URL |
| [58] |
Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet, Acta Mater. 46, 5509 (1998)
DOI URL |
| [59] |
X. Sun, H. Li, M. Zhan, Modelling Simul. Mater. Sci. Eng. 27, 015004 (2019)
DOI URL |
| [60] |
D. Wang, Q. Fan, X. Cheng, Y. Zhou, R. Shi, Y. Qian, L. Wang, X. Zhu, H. Gong, K. Chen, J. Yuan, L. Yang, J. Mater. Sci. Technol. 111, 76 (2022)
DOI URL |
| [61] |
Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, L. Lu, Acta Mater. 61, 217 (2013)
DOI URL |
| [62] |
X. Lu, J. Zhao, Z. Wang, B. Gan, J. Zhao, G. Kang, X. Zhang, Int. J. Plast. 130, 102703 (2020)
DOI URL |
| [63] |
L. Kubin, B. Devincre, T. Hoc, Acta Mater. 56, 6040 (2008)
DOI URL |
| [64] |
J. Gao, H. Li, X. Sun, X. Zhang, M. Zhan, Int. J. Plast. 157, 103397 (2022)
DOI URL |
| [65] |
J. Li, A.K. Soh, Int. J. Plast. 39, 88 (2012)
DOI URL |
| [66] |
Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88, 170 (2015)
DOI URL |
| [67] |
H. Zurob, Y. Brechet, J. Dunlop, Acta Mater. 54, 3983 (2006)
DOI URL |
| [68] |
R. Quey, P.R. Dawson, F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729 (2011)
DOI URL |
| [69] |
S. Fan, D.J. Prior, A.J. Cross, D.L. Goldsby, T.F. Hager, M. Negrini, C. Qi, Acta Mater. 209, 116810 (2021)
DOI URL |
| [70] | H. Inui, K. Kishida, M. Misaki, M. Kobayashi, Y. Shirai, M. Yamaguchi, Philos. Mag. A 72, 1609 (1995) |
| [71] |
X.G. Fan, Y. Zhang, H.J. Zheng, Z.Q. Zhang, P.F. Gao, M. Zhan, Mater. Charact. 137, 151 (2018)
DOI URL |
| [72] |
M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, J.M. Prado, Acta Mater. 53, 4605 (2005)
DOI URL |
| [73] |
J.D. Shimanek, Z.K. Liu, A.M. Beese, Comput. Mater. Sci. 237, 112879 (2024)
DOI URL |
| [1] | Shudong Yang, Xiaoqian Guo, Chao Ma, Lu Shen, Lingyu Zhao, Wei Zhu. Anisotropic Mechanical Behavior in an Extruded AZ31 Magnesium Alloy: Experimental and Crystal Plasticity Modeling [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1527-1544. |
| [2] | Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480. |
| [3] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
| [4] | Yunpeng Meng, Boyu Lin, Lifei Wang, Jianfeng Fan, Shangzhou Zhang, Liwei Lu, Hans Jørgen Roven, Hua Zhang. Effect of Extrusion Combination Types on Microstructure and Mechanical Properties of the AZ31/GW103K Bimetallic Composite Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1959-1972. |
| [5] | Chunni Jia, Gang Shen, Wenxiong Chen, Baojia Hu, Chengwu Zheng, Dianzhong Li. Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 777-788. |
| [6] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu, Rui Wang, Jintao Li. Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 452-460. |
| [7] | Chi Zhang,Li-Wen Zhang,Wen-Fei Shen,Ying-Nan Xia,Yu-Tan Yan. 3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 79-88. |
| [8] | Bouzid Maamache, Mabrouk Bouabdallah, Abdelhalim Brahimi, Youcef Yahmi, Billel Cheniti, Brahim Mehdi. Mechanical and Metallurgical Characterization of HSLA X70 Welded Pipeline Steel Subjected to Successive Repairs [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 568-576. |
| [9] | Shi-Hong Zhang, Shuai-Feng Chen, Yan Ma, Hong-Wu Song, Ming Cheng. Developments of New Sheet Metal Forming Technology and Theory in China [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1452-1470. |
| [10] | Lingyan Zhao, Dingyi Zhu, Longlong Liu, Zhenming Hu, Mingjie Wang. Strain Hardening Associated with Dislocation, Deformation Twinning, and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 601-608. |
| [11] | Chuan WU, He YANG, Hongwei LI. Substructure Evolution of Ti-6Al-2Zr-1Mo-1V Alloy Isothermally Hot Compressed in α+β Two-Phase Region [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 533-544. |
| [12] | Mei YANG,Xianghuai DONG. Simulation of lattice orientation effects on void growth and coalescence by crystal plasticity [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(1): 40-50. |
| [13] | J.L. Su , G.K. Hu. A MICROMECHANICAL MODEL FOR γ-TiAl BASE PST CRYSTALS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(6): 686-694 . |
| [14] | S.Imatani, R.Kawakami, Y.Kawano. MICROSCOPIC ANALYSIS OF POLYCRYSTALLINE MATERIAL AT HIGH TEMPERATURE [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 350-354 . |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
