Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1385-1396.DOI: 10.1007/s40195-025-01868-4
Previous Articles Next Articles
Sen Ge1, Ben Niu1, Zhen-Hua Wang1, Qian-Fu Pan2,3(), Chao-Hong Liu3, Qing Wang1(
)
Received:
2024-12-06
Revised:
2025-02-01
Accepted:
2025-02-07
Online:
2025-05-17
Published:
2025-05-17
Contact:
Qian-Fu Pan, Qing Wang
Sen Ge, Ben Niu, Zhen-Hua Wang, Qian-Fu Pan, Chao-Hong Liu, Qing Wang. Recrystallization Behavior and Mechanical Property of a Medium-Si 12%Cr Reduced Activation Ferritic/Martensitic Steel Cladding Tube During the Manufacture[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1385-1396.
Add to citation manager EndNote|Ris|BibTeX
Process | Parameter | Total strain (ε) |
---|---|---|
1423 K hot extrusion (initial state) | Φ 57 × 5.0 mm | 0 |
Intermediate annealing (initial IA) | 1123 K/90 min | |
1st-pass cold rolling (1st CR) | Φ 45 × 3.5 mm | 0.6 |
Intermediate annealing (1st IA) | 1073 K/60 min | |
2nd-pass cold rolling (2nd CR) | Φ 32 × 2.5 mm | 1.3 |
Intermediate annealing (2nd IA) | 1073 K/60 min | |
3rd-pass cold rolling (3rd CR) | Φ 19 × 1.5 mm | 2.3 |
Intermediate annealing (3rd IA) | 1073 K/60 min | |
4th-pass cold rolling (4th CR) | Φ 12 × 0.8 mm | 3.4 |
Final annealing (4th FA) | 1073 K/60 min |
Table 1 Processing parameters of RAFM steel cladding tubes
Process | Parameter | Total strain (ε) |
---|---|---|
1423 K hot extrusion (initial state) | Φ 57 × 5.0 mm | 0 |
Intermediate annealing (initial IA) | 1123 K/90 min | |
1st-pass cold rolling (1st CR) | Φ 45 × 3.5 mm | 0.6 |
Intermediate annealing (1st IA) | 1073 K/60 min | |
2nd-pass cold rolling (2nd CR) | Φ 32 × 2.5 mm | 1.3 |
Intermediate annealing (2nd IA) | 1073 K/60 min | |
3rd-pass cold rolling (3rd CR) | Φ 19 × 1.5 mm | 2.3 |
Intermediate annealing (3rd IA) | 1073 K/60 min | |
4th-pass cold rolling (4th CR) | Φ 12 × 0.8 mm | 3.4 |
Final annealing (4th FA) | 1073 K/60 min |
Fig. 4 EBSD IPF maps of the current alloy after different processing passes of a initial state, b 1st, c 2nd. CR state maps are listed in the left column, and the intermediate annealing (IA) is listed in the right column
Fig. 5 TEM characterization of the alloy tube after annealing treatment: a 1st IA, b 2nd IA, c 3rd IA, d 4th FA, e the EDS elemental distributions in d
Fig. 7 Mechanical properties of the alloy tube at different states: a variation in microhardness, b room-temperature (RT) engineering stress-strain tensile curves of CR, c engineering stress-strain tensile curves of IA, d 823 K high-temperature (HT) engineering stress-strain tensile curves of IA
Fig. 8 Mechanical tensile properties of alloy at different states: a CR states measured at RT, b IA states measured at RT, c IA states measured at 873 K
Fig. 11 Calculated strength increments of annealed alloys: a ε ~ 0, b ε ~ 3.4. The measured yield strength values are also presented with red star symbols for comparison
[1] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013) |
[2] | Z.G. Zhu, Q. Zhang, J.B. Tan, X.Q. Wu, H.B. Ma, Z.Y. Zhang, Q.S. Ren, E.H. Han, X. Wang, Corros. Sci. 204, 110405 (2022) |
[3] | T.W. Chena, G. Li, H. Wang, X.G. An, X.F. Huang, J. Mater. Res. Technol. 29, 1542 (2024) |
[4] | L.J. Cui, Y. Dai, S.S.A. Gerstl, M.A. Pounchon, J. Nucl. Mater. 573, 154121 (2023) |
[5] | X. Hu, L.X. Huang, W. Yan, W. Wang, W. Sha, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 586, 253 (2013) |
[6] | Y.T. Xu, W. Li, M.J. Wang, X.Y. Zhang, Y. Wu, N. Min, W.Q. Liu, X.J. Jin, Acta Mater. 175, 148 (2019) |
[7] | X. Xiao, G.Q. Liu, B.F. Hu, J.S. Wang, W.B. Ma, J. Mater. Sci. Technol. 31, 311 (2015) |
[8] | J. Vanaja, K. Laha, M.D. Mathew, T. Jayakumar, E.R. Kumar, Procedia Eng. 55, 271 (2013) |
[9] | J.S. Park, S.J. Kim, C.S. Lee, Mater. Sci. Eng. A 298, 127 (2001) |
[10] | A. Puype, L. Malerba, N.D. Wispelaere, R. Petrov, J. Sietsma, J. Nucl. Mater. 502, 282 (2018) |
[11] | F. Yuan, G.Y. Wei, S.R. Gao, S.Y. Lu, H.S. Liu, S.X. Li, X.F. Fang, Y.B. Chen, Corros. Sci. 203, 110346 (2022) |
[12] | S.W. Feng, H.L. Dai, X.Y. Sun, K.J. Jiang, Z. Qiu, X. Chen, G. Chen, J. Mater. Sci. Technol. 204, 29 (2025) |
[13] | A. Xie, S.H. Chen, L.C. Yin, N. He, C.L. Chen, L.J. Rong, Corros. Sci. 237, 112350 (2024) |
[14] | K. Kozlov, V. Shabashov, A. Kozlov, V. Sagaradze, V. Semyonkin, V. Panchenko, A. Zamatovskii, N. Kataeva, A. Nikitina, J. Nucl. Mater. 558, 153384 (2022) |
[15] | B.H. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, D. Raabe, Acta Mater. 164, 683 (2019) |
[16] | S. Yin, L. Yang, Y. Liu, R.G. Yang, Y.Y. Wang, F. Zhao, J. Nucl. Mater. 567, 153805 (2022) |
[17] | X.J. Zhao, S. Deng, J.F. Li, C. Li, Y.Z. Lei, S.N. Luo, J. Alloys Compd. 984, 173955 (2024) |
[18] | S. Yin, S. Ye, F. Zhao, Fusion Eng. Des. 202, 114363 (2024) |
[19] | H. He, H. Wang, K. He, X. Liang, X.F. Huang, Mater. Sci. Eng. A 800, 140364 (2021) |
[20] | M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H. Wang, X. Zhang, Acta Mater. 112, 361 (2016) |
[21] | L. Tan, M.A. Sokolov, S.J. Pawel, T.L. Sham, J.T. Busby, Mater. Sci. Eng. A 832, 142359 (2022) |
[22] |
Z. Shang, J. Ding, C. Fan, M. Song, J. Li, Q. Li, S. Xue, K.T. Hartwig, X. Zhang, Acta Mater. 169, 209 (2019)
DOI |
[23] | R.Y. Zhou, L.H. Zhu, Y.P. Huang, Mater. Charact. 190, 112058 (2022) |
[24] | Q.H. Wang, H.W. Zhai, H.B. Xia, L.T. Liu, J.J. He, D.B. Xia, H. Yang, B. Jiang, Acta Metall. Sin.-Engl. Lett. 35, 1793 (2022) |
[25] | Y.P. Lü, D.A. Molodov, G. Gottstein, Acta Mater. 59, 3229 (2011) |
[26] | C. Rong, J.R. Yang, X.L. Zhao, K. Huang, Y. Liu, X.H. Wang, D.D. Zhu, R.R. Chen, Acta Metall. Sin.-Engl. Lett. 37, 633 (2024) |
[27] | Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Mater. Charact. 112, 180 (2016) |
[28] | S. Ge, B. Niu, Z.H. Wang, Q.F. Pan, C.H. Liu, Q. Wang, J. Mater. Eng. Perform. 31, 5697 (2022) |
[29] | D.H. Kim, C.M. Lee, J.H. Kim, S.H. Kim, S. Yeo, Y.K. Lee, J. Nucl. Mater. 593, 154999 (2024) |
[30] | J.X. Dong, H.Y. Yu, R. Cao, Z.Q. Liu, X.M. Wang, J. Wang, Z.N. Bi, Mater. Sci. Eng. A 915, 147271 (2024) |
[31] | P. Maj, B. Adamczyk-Cieslak, J. Nowicki, J. Mizera, M. Kulczyk, Mater. Sci. Eng. A 734, 85 (2018) |
[32] | F.L. Jian, H. Zhang, L.X. Li, J.H. Chen, Mater. Sci. Eng. A 552, 269 (2012) |
[33] | Q.K. Zhang, X.F. Hua, H.C. Jiang, C.G. Yan, L.J. Rong, Mater. Charact. 203, 113045 (2023) |
[34] | P.E.J. Rivera-Díaz-del-Castillo, K. Hayashi, E.I. Galindo-Nava, Mater. Sci. Technol. 29, 1206 (2013) |
[35] | S.W. Young, M. Sato, K. Yamamitsu, Y. Shimada, Y.J. Zhang, G. Miyamoto, T. Furuhara, Acta Mater. 206, 116612 (2021) |
[36] | Q.L. Wang, W.J. Wang, J.C. Wang, P.S. Du, H.Q. Xu, Z.Y. Yu, Y.P. Xu, H.S. Zhou, G.N. Luo, J. Nucl. Mater. 600, 155272 (2024) |
[37] | B. Niu, Z.H. Wang, S. Ge, Q. Wang, C. Dong, R.Q. Zhang, H.Q. Liu, P.K. Liaw, J. Mater. Res. Technol. 19, 4571 (2022) |
[38] | E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98, 81 (2015) |
[39] | Z. Liu, X.T. Wang, C. Dong, Mater. Sci. Eng. A 787, 139529 (2020) |
[40] |
Z.H. Wang, B. Niu, Q. Wang, C. Dong, J.C. Jie, T.M. Wang, T.G. Nieh, J. Mater. Sci. Technol. 93, 60 (2021)
DOI |
[41] | D.T. Yang, L.Y. Xiong, H.B. Liao, G.P. Yang, X.Y. Wang, S. Liu, Acta Metall. Sin.-Engl. Lett. 37, 373 (2024) |
[42] | K.M. Xue, W.C. Tian, Q.H. Hu, S.L. Yan, P. Li, J. Nucl. Mater. 569, 153898 (2022) |
[43] | D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Scr. Mater. 222, 115058 (2023) |
[44] | O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.S. Park, M.R. Daymond, Acta Mater. 175, 297 (2019) |
[1] | Fei Yang, Canhui Wu, Ruifeng Li, Wenyi Huo, Liming Dong, Feng Fang. Strain-Induced Balancing of Strength and Electrical Conductivity in Cu-20 wt% Fe Alloy Wires: Effect of Drawing Strain [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1246-1260. |
[2] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[3] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[4] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[5] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[6] | Yang Feng, Wenhuan Chen, Zheng Xu, Weijun He, Bin Jiang, Fusheng Pan. Fabrication of AZ31/Mg3Y Composites with Excellent Strength and Plasticity via Accumulated Rolling Bonding and Diffusion Annealing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 339-352. |
[7] | Ke Qiao, Kuaishe Wang, Jia Wang, Zhengyang Hao, Kairui Xue, Jun Cai, Fengming Qiang, Wen Wang. Microstructure Evolution and Recrystallized Behavior of Friction Stir Welding Twin-Induced Plasticity Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1947-1960. |
[8] | Xihai Li, Hong Yan, Rongshi Chen. Tailoring the Texture and Mechanical Anisotropy of Multi-cross Rolled Mg-Zn-Gd Alloy by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 251-265. |
[9] | Tianjiao Li, Jiang Zheng, Lihong Xia, Haoge Shou, Yongfa Zhang, Rong Shi, Liuyong He, Wenkai Li. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 266-280. |
[10] | Zhenzhen Gui, Fan Jiang, Zhixin Kang, Fan Zhang, Zu Li, Jianhui Zhang. Microstructure and Properties of Micro-Alloyed Mg-2.0Nd-0.2Sr by Heat Treatment and Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 323-334. |
[11] | Ji-Peng Zou, Xue-Mei Luo, Bin Zhang, Guo-Dong Liu, Hong-Lei Chen, Xiao-Fei Zhu, Wen-Ke Yang, Guang-Ping Zhang. Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2045-2057. |
[12] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[13] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[14] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[15] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||