Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1157-1173.DOI: 10.1007/s40195-025-01863-9
Previous Articles Next Articles
Tiantian Wang1, Lin Liu1, Zexin Liu1, Kang Wang1, Runhua Yao1,2(), Xiaohong Yao1, Ruiqiang Hang1(
)
Received:
2024-12-04
Revised:
2025-01-19
Accepted:
2025-02-01
Online:
2025-07-10
Published:
2025-05-04
Contact:
Runhua Yao, yaorunhua@tyut.edu.cn;Ruiqiang Hang, hangruiqiang@tyut.edu.cn
Tiantian Wang, Lin Liu, Zexin Liu, Kang Wang, Runhua Yao, Xiaohong Yao, Ruiqiang Hang. Characterization, Mechanical Property, Degradation Behavior, and Osteogenic Activity of Zn-Mn Alloy Foam Prepared by Electrodeposition[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1157-1173.
Add to citation manager EndNote|Ris|BibTeX
Process parameter | Other parameters | Zn (wt%) | Mn (wt%) |
---|---|---|---|
I = 0.3 A | pH = 4, T = 30 °C | 99.868 | 0.132 |
I = 0.4 A | pH = 4, T = 30 °C | 99.804 | 0.196 |
I = 0.5 A | pH = 4, T = 30 °C | 99.67 | 0.330 |
pH = 3 | I = 0.4 A, T = 30 °C | 99.876 | 0.124 |
pH = 5 | I = 0.4 A, T = 30 °C | 99.773 | 0.227 |
T = 20 °C | I = 0.4 A, pH = 4 | 99.735 | 0.265 |
T = 40 °C | I = 0.4 A, pH = 4 | 99.891 | 0.109 |
Table 1 Chemical compositions of Zn-Mn alloy foams investigated in this study
Process parameter | Other parameters | Zn (wt%) | Mn (wt%) |
---|---|---|---|
I = 0.3 A | pH = 4, T = 30 °C | 99.868 | 0.132 |
I = 0.4 A | pH = 4, T = 30 °C | 99.804 | 0.196 |
I = 0.5 A | pH = 4, T = 30 °C | 99.67 | 0.330 |
pH = 3 | I = 0.4 A, T = 30 °C | 99.876 | 0.124 |
pH = 5 | I = 0.4 A, T = 30 °C | 99.773 | 0.227 |
T = 20 °C | I = 0.4 A, pH = 4 | 99.735 | 0.265 |
T = 40 °C | I = 0.4 A, pH = 4 | 99.891 | 0.109 |
Fig. 2 A, B Macro and micro morphologies of pure Zn and Zn-Mn alloy foams prepared under different conditions; C EDS mapping of Zn-Mn alloy foam; D alloy foam after heat treatment; E X-ray diffraction patterns
Fig. 3 Important parameters of pure Zn and Zn-Mn alloy foams. A Deposition efficiency and porosity histograms: a deposition current group, the other parameters were pH = 4, T = 30 °C, b electrolyte pH group, the other parameters were I = 0.4 A, T = 30 °C, c electrolyte temperature group, the other parameters were I = 0.4 A, pH = 4, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C. B Pore size and pore wall thickness histograms: a deposition current group, the other parameters were pH = 4, T = 30 °C, b electrolyte pH group, the other parameters were I = 0.4 A, T = 30 °C, c electrolyte temperature group, the other parameters were I = 0.4 A, pH = 4, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C
Fig. 4 Mechanical properties of pure Zn and Zn-Mn alloy foams. A Compressive stress-strain curves: a deposition current group, b electrolyte pH group, c electrolyte temperature group, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C. B Peak stress histograms: a deposition current group, b electrolyte pH group, c electrolyte temperature group, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C
Fig. 5 Immersion test results of pure Zn and Zn-Mn alloy foams. A Rate of weight loss curves: a deposition current group, b electrolyte pH group, c electrolyte temperature group, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C. B Corrosion rate histograms: a deposition current group, b electrolyte pH group, c electrolyte temperature group, and d pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C. C Surface macroscopic morphologies of the foams after immersing in r-SBF for different times. D Surface SEM images of the foams after the immersion for different times: a pure Zn metal foams, b Zn-Mn alloy foams
Fig. 6 Live/dead fluorescence staining images and MTT results of MC3T3-E1 cells cultured for 1, 3 and 5 days in osteogenic medium containing 10% foam extracts. A Deposition current group, B electrolyte pH group, C electrolyte temperature group, and D pure Zn and Zn-Mn alloy foams. (** p < 0.01 and *** p < 0.001)
Fig. 7 Ion concentration histograms of the foam extracts: A deposition current group, the other parameters were pH = 4, T = 30 °C; B electrolyte pH group, the other parameters were I = 0.4 A, T = 30 °C; C electrolyte temperature group, the other parameters were I = 0.4 A, pH = 4; D pure Zn and Zn-Mn alloy foams, the parameters were I = 0.4 A, pH = 4 and T = 30 °C
Fig. 8 Optical images of ALP activity of MC3T3-E1 cells cultured in osteogenic medium containing 10% foam extract for 3 and 7 days: A deposition current group; B electrolyte pH group; C electrolyte temperature group; D pure Zn and Zn-Mn alloy foams
Fig. 9 Qualitative images and Quantitative results of type I collagen secreted of MC3T3-E1 cells cultured for 7 and 14 days in osteogenic medium containing 10% foam extracts: A deposition current group, B electrolyte pH group, C electrolyte temperature group, and D pure Zn and Zn-Mn alloy foams. (** p < 0.01 and *** p < 0.001)
Fig. 10 Qualitative images and Quantitative results of extracellular matrix mineralization of MC3T3-E1 cells cultured for 14 and 21 days in osteogenic medium containing 10% foam extracts: A deposition current group, B electrolyte pH group, C electrolyte temperature group, and D pure Zn and Zn-Mn alloy foams. (** p < 0.01 and *** p < 0.001)
[1] | Y. Li, J. Ge, M. Luo, W. Niu, X. Ling, K. Xu, C. Lin, B. Lei, X. Zhang, Appl. Mater. Today 26, 101254 (2022) |
[2] | Y. Xu, Y. Li, A. Gao, P.K. Chu, H. Wang, Innov. Life 1, 100015 (2023) |
[3] | H. Chen, J. Zhang, X. Li, L. Liu, X. Zhang, D. Ren, C. Ma, L. Zhang, Z. Fei, T. Xu,Biofabrication11, 45007 (2019) |
[4] | T. Thesleff, K. Lehtimäki, T. Niskakangas, S. Huovinen, B. Mannerström, S. Miettinen, R. Seppänen-Kaijansinkko, J. Öhman, Stem Cells Transl. Med. 6, 1576 (2017) |
[5] | R. Di, Y. Sun, R. Yao, S. Pei, X. Yao, R. Hang, Acta Metall. Sin.-Engl. Lett. 37, 1581 (2024) |
[6] |
J.M. Piitulainen, T. Kauko, K.M. Aitasalo, V. Vuorinen, P.K. Vallittu, J.P. Posti, World Neurosurg. 83, 708 (2015)
DOI PMID |
[7] | L. Che, Z. Lei, P. Wu, D. Song, Adv. Funct. Mater. 29, 1904450 (2019) |
[8] | X. Tong, Z. Shi, L. Xu, J. Lin, D. Zhang, K. Wang, Y. Li, C. Wen, Acta Biomater. 102, 481 (2020) |
[9] | K. Niu, D. Zhang, F. Qi, J. Lin, Y. Dai, Trans. Nonferrous Met. Soc. China34, 2231 (2024) |
[10] | Y. Nie, J. Dai, X. Zhang, Acta Metall. Sin.-Engl. Lett. 36, 295 (2023) |
[11] |
M. Schinhammer, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, Acta Biomater. 6, 1705 (2010)
DOI PMID |
[12] | L.M. Plum, L. Rink, H. Haase, Int. J. Environ. Res. Public Health7, 1342 (2010) |
[13] | Y. Yang, M. Yang, C. He, F. Qi, D. Wang, S. Peng, C. Shuai, Compos. Pt. B 216, 108882 (2021) |
[14] | H. Huang, H. Liu, L. Wang, Y. Li, S.O. Agbedor, J. Bai, F. Xue, J. Jiang, Acta Metall. Sin.-Engl. Lett. 33, 1191 (2020) |
[15] | X. Liao, J. Huang, Z. Liu, J. Guo, D. Zheng, P. Chen, F. Cao, Acta Metall. Sin.-Engl. Lett. 37, 1564 (2024) |
[16] | Z. Cui, L. Zhou, X. Hao, M. Luo, W. Wang, J. Wang, W. Li, Acta Metall. Sin.-Engl. Lett. 36, 1305 (2023) |
[17] |
B. Jia, H. Yang, Z. Zhang, X. Qu, X. Jia, Q. Wu, Y. Han, Y. Zheng, K. Dai, Bioact. Mater. 6, 1588 (2021)
DOI PMID |
[18] | G. Lu, Y. Dai, S. He, C. Chen, X. Liu, K. Tang, L. Guo, D. Zhang, J. Lin, C. Wen, Corros. Sci. 239, 112399 (2024) |
[19] | Z. Shi, J. Yu, X. Liu, H. Zhang, D. Zhang, Y. Yin, L. Wang, Mater. Sci. Eng. C 99, 969 (2019) |
[20] | W. Li, Y. Dai, W. Cai, S. Lin, L. Guo, D. Zhang, Y. Li, C. Wen, Rare Met. 43, 5284 (2024) |
[21] | Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Mater. Des. 117, 84 (2017) |
[22] | L. Hou, Z. Li, H. Zhao, Y. Pan, S. Pavlinich, X. Liu, X. Li, Y. Zheng, L. Li, J. Mater. Sci. Technol. 32, 874 (2016) |
[23] | J. Hreha, A. Wey, C. Cunningham, E.S. Krell, E.A. Brietbart, D.N. Paglia, N.J. Montemurro, D.A. Nguyen, Y.J. Lee, D. Komlos, J. Orthop. Res. 33, 122 (2015) |
[24] | S. Vieira, A. Cerqueira, S. Pina, O. da Cruz Silva, J. Abrantes, J. Ferreira, J. Inorg. Biochem. 136, 57 (2014) |
[25] | M. Miola, C.V. Brovarone, G. Maina, F. Rossi, L. Bergandi, D. Ghigo, S. Saracino, M. Maggiora, R.A. Canuto, G. Muzio, E. Vernè, Mater. Sci. Eng. C 38, 107 (2014) |
[26] | F. Jin, M. Liu, D. Zhang, X. Wang,Innovation4, 100365 (2023) |
[27] | P.S. Bagha, S. Khaleghpanah, S. Sheibani, M. Khakbiz, A. Zakeri, J. Alloys Compd. 735, 1319 (2018) |
[28] |
B. Jia, H. Yang, Y. Han, Z. Zhang, X. Qu, Y. Zhuang, Q. Wu, Y. Zheng, K. Dai, Acta Biomater. 108, 358 (2020)
DOI PMID |
[29] |
I. Gotman, D. Ben-David, R.E. Unger, T. Böse, E.Y. Gutmanas, C.J. Kirkpatrick, Acta Biomater. 9, 8440 (2013)
DOI PMID |
[30] | J. Cui, L. Chao, J. Ren, C. Ling, D. Xie, D. Wang, H. Liang, H. Liang, Y. Yang, J. Mater. Res. Technol. 28, 3707 (2024) |
[31] | F. Matassi, A. Botti, L. Sirleo, C. Carulli, M. Innocenti, Clin. Cases. Miner. Bon. 10, 111 (2013) |
[32] |
J. Wieding, T. Lindner, P. Bergschmidt, R. Bader,Biomaterials46, 35 (2015)
DOI PMID |
[33] |
A. Liu, M. Sun, X. Yang, C. Ma, Y. Liu, X. Yang, S. Yan, Z. Gou, J. Biomater. Appl. 31, 650 (2016)
PMID |
[34] | Y. Hou, G. Jia, R. Yue, C. Chen, J. Pei, H. Zhang, H. Huang, M. Xiong, G. Yuan, Mater. Charact. 137, 162 (2018) |
[35] | C.A. Vogiatzis, A. Tsouknidas, D.T. Kountouras, S. Skolianos, Mater. Des. 85, 444 (2015) |
[36] | A. Ataee, Y. Li, M. Brandt, C. Wen, Acta Mater. 158, 354 (2018) |
[37] | J. Jeun, W. Kim, S. Hong, Mater. Lett. 138, 33 (2015) |
[38] | S. Yang, H. Wen, T. Lee, T. Lui, J. Mater. Chem. B 4, 1891 (2016) |
[39] | J.A.M. Oliveira, A.F. de Almeida, A.R.N. Campos, S. Prasad, J.J.N. Alves, R.A.C. de Santana, J. Alloys Compd. 853, 157104 (2021) |
[40] | A. Jung, S. Diebels, Adv. Eng. Mater. 21, 1900237 (2019) |
[41] | A.S.T.M. Standard, Annual Book of ASTM Standards, USA (2018) |
[42] | A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. 65, 188 (2003) |
[43] | A.S.T.M. Standard, Annual Book of ASTM Standards, USA (2004) |
[44] | E. Zhang, X. Zhao, J. Hu, R. Wang, S. Fu, G. Qin, Bioact. Mater. 6, 2569 (2021) |
[45] |
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71, 1 (2018)
DOI PMID |
[46] | C.M. Walthers, A.K. Nazemi, S.L. Patel, B.M. Wu, J.C.Y. Dunn,Biomaterials35, 5129 (2014) |
[47] | Y. Takahashi, Y. Tabata, J. Biomater. Sci. 15, 41 (2012) |
[48] | J. Li, P. Habibovic, M. Vandendoel, C. Wilson, J. Dewijn, C. Vanblitterswijk, K. Degroot,Biomaterials28, 2810 (2007) |
[49] | A. Mittal, P. Negi, K. Garkhal, S. Verma, N. Kumar, Biomed. Mater. 5, 45001 (2010) |
[50] | J.R. Jones, L.M. Ehrenfried, L.L. Hench,Biomaterials27, 964 (2006) |
[51] | D. Close, N. Stein, N. Allain, A. Tidu, E. Drynski, M. Merklein, R. Lallement, Surf. Coat. Technol. 298, 73 (2016) |
[52] | N. Loukil, M. Feki, Appl. Surf. Sci. 410, 574 (2017) |
[53] | M. Bučko, J. Rogan, B. Jokić, M. Mitrić, U. Lačnjevac, J.B. Bajat, J. Solid State Electrochem. 17, 1409 (2013) |
[54] | D. Sylla, C. Savall, M. Gadouleau, C. Rebere, J. Creus, P. Refait, Surf. Coat. Technol. 200, 2137 (2005) |
[55] | C. Savall, C. Rebere, D. Sylla, M. Gadouleau, P. Refait, J. Creus, Mater. Sci. Eng. A 430, 165 (2006) |
[56] | C. Müller, M. Sarret, T. Andreu, J. Electrochem. Soc. 149, 600 (2002) |
[57] | S. Hu, S. Bai, L. Zhu, Y. Ye, W. Zhen, L. Shun, T. Yu, Trans. Nonferrous Met. Soc. China32, 3650 (2022) |
[58] | N.M. Pereira, P.M.V. Fernandes, C.M. Pereira, A. Fernando Silva, J. Electrochem. Soc. 159, 501 (2012) |
[59] |
A. Boukhouiete, S. Boumendjel, N.E.H. Sobhi, Turk. J. Chem. 45, 1599 (2021)
DOI PMID |
[60] | S. Sengupta, A. Patra, S. Jena, K. Das, S. Das, Metall. Mater. Trans. A 49, 920 (2018) |
[61] | X. Qiao, H. Li, W. Zhao, D. Li, Electrochim. Acta 89, 771 (2013) |
[62] | Y. Shajari, L. Nikzad, M. Razavi, Sci. Rep. 13, 16569 (2023) |
[63] | C. Kádár, R. Gorejová, P. Kubelka, R. Oriňaková, I.N. Orbulov, Adv. Eng. Mater. 26, 2301496 (2024) |
[64] | J. Čapek, D. Vojtěch, A. Oborna, Mater. Des. 83, 468 (2015) |
[65] | L. Zhao, Z. Zhang, Y. Song, S. Liu, Y. Qi, X. Wang, Q. Wang, C. Cui, Mater. Des. 108, 136 (2016) |
[66] | M.M. Abou-Krisha, J. Coat. Technol. Res. 9, 775 (2012) |
[67] | Y. Su, H. Yang, J. Gao, Y.X. Qin, Y. Zheng, D. Zhu, Adv. Sci. 6, 1900112 (2019) |
[68] | Y. Chen, W. Zhang, M.F. Maitz, M. Chen, H. Zhang, J. Mao, Y. Zhao, N. Huang, G. Wan, Corros. Sci. 111, 541 (2016) |
[69] | E. Jablonská, D. Vojtěch, M. Fousová, J. Kubásek, J. Lipov, J. Fojt, T. Ruml, Mater. Sci. Eng. C 68, 198 (2016) |
[70] | F. Zhao, A. Gao, Q. Liao, Y. Li, I. Ullah, Y. Zhao, X. Ren, L. Tong, X. Li, Y. Zheng, Adv. Funct. Mater. 34, 2311812 (2024) |
[71] | J. Ma, N. Zhao, D. Zhu, A.C.S. Biomater. Sci. Eng. 1, 1174 (2015) |
[72] | B.R. Barrioni, A.C. Oliveira, M. de Fátima Leite, M. de Magalhães Pereira, J. Mater. Sci. 52, 8904 (2017) |
[73] | J. Ma, N. Zhao, D. Zhu, Sci. Rep. 6, 26661 (2016) |
[74] | K.M. Erikson, M. Aschner, Met. Ions Life Sci. 19, 253 (2019) |
[75] | B.R. Barrioni, E. Norris, S. Li, P. Naruphontjirakul, J.R. Jones, M.D.M. Pereira, Mater. Sci. Mater. Med. 30, 86 (2019) |
[76] | K. Li, S. Liu, J. Li, D. Yi, D. Shao, T. Hu, X. Zheng, Biomater. Sci. 11, 3893 (2023) |
[77] | M. Miola, C.V. Brovarone, G. Maina, F. Rossi, L. Bergandi, D. Ghigo, S. Saracino, M. Maggiora, R.A. Canuto, G. Muzio, Mater. Sci. Eng. C 38, 107 (2014) |
[78] | Y. Bae, M. Kim, Biol. Trace Elem. Res. 124, 28 (2008) |
[79] | L. Yu, Y. Tian, Y. Qiao, X. Liu, Colloids Surf. B 152, 376 (2017) |
[80] | L. Wang, C. Yan, F. Wang, Q. Wang, D. Huang, X. Yang, T. Ma, P. Chen, C. Li, Z. Zhang, Mater. Today Adv. 24, 100542 (2024) |
[81] | X. Zhang, Y. Lv, F. Shan, Y. Wu, X. Lu, Z. Peng, B. Liu, L. Yang, Z. Dong, Appl. Surf. Sci. 531, 147399 (2020) |
[1] | Yunlu Jiang, Lihui Wu, Dingrui Ni, Hongbo Zhao, Xu Han, Peng Xue, Bolv Xiao, Zongyi Ma. Effect of Post Weld Heat Treatment on Residual Stress and Mechanical Properties of 106 mm Thick TC4 Titanium Alloy Electron Beam Welded Joints [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1083-1094. |
[2] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[3] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[4] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[5] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[6] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[7] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[8] | Linwei Li, Donghu Zhou, Kai Zhao, Lifeng Jiang, Huijun Kang, Enyu Guo, Feng Mao, Zongning Chen, Tongmin Wang. Effects of Reinforcement Content and Homogenization Treatment on the Microstructure and Mechanical Properties of in-situ TiB2/2219Al Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1421-1437. |
[9] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[10] | Sen Wang, Hucheng Pan, Caixia Jiang, Zhihao Zeng, Zhen Pan, Weineng Tang, Chubin Yang, Yuping Ren, Gaowu Qin. Microstructure and Mechanical Property of the Large Cross-Sectioned Mg-Gd-Y-Zn-Zr Alloy Produced by Small Extrusion Ratio [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 999-1006. |
[11] | Xuan-Hong Cai, Zhen-Hua Wang, Ben Niu, Jin-Feng Li, Qing Wang, Show authors. Microstructural Evolutions and Mechanical Properties of Energetic Al1 (TiZrNbTaMoCr)15 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 620-632. |
[12] | Chong Wang, Fuyuan Liu, Xuejian Wang, Enyu Guo, Zelong Du, Kunkun Deng, Zongning Chen, Huijun Kang, Guohao Du, Tongmin Wang. Tailoring the Microstructure and Mechanical Property of Mg-Zn Matrix Composite via the Addition of Al Element [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 438-452. |
[13] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[14] | Zeqin Cui, Lei Zhou, Xiaohu Hao, Mengda Luo, Wenxian Wang, Jianzhong Wang, Weiguo Li. Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn-Mg Composites with a Core-Shell Structure Prepared by SPS [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1305-1316. |
[15] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||