Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (8): 1305-1316.DOI: 10.1007/s40195-023-01548-1
Previous Articles Next Articles
Zeqin Cui1,2(), Lei Zhou1,2, Xiaohu Hao1,2, Mengda Luo1,2, Wenxian Wang1,2, Jianzhong Wang3(
), Weiguo Li4
Received:
2022-09-17
Revised:
2023-01-27
Accepted:
2023-02-09
Online:
2023-08-10
Published:
2023-03-16
Contact:
Zeqin Cui cuizeqin@tyut.edu.cn. Jianzhong Wang wangjz20012001@163.com.
Zeqin Cui, Lei Zhou, Xiaohu Hao, Mengda Luo, Wenxian Wang, Jianzhong Wang, Weiguo Li. Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn-Mg Composites with a Core-Shell Structure Prepared by SPS[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1305-1316.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Raw material powders: a SEM image of Zn powders, b distribution of Zn powders size, c SEM image of Mg powders, d distribution of Mg powders size
Fig. 3 Microstructures of the Zn-10 Mg composite: a OM image, b quantitatively analysis points A, B, and C in the image of the core-shell interface in the upper right corner, c scanning results of region A of TEM slices at the core-shell interface, d local magnification of region B (shell) in (c), e selected electron diffraction patterns in the region B (shell), f XRD image
Material | Density (g/cm3) | Relative density (%) |
---|---|---|
T-10 | 5.38 | 98.7 ± 0.003 |
T-15 | 5.39 | 98.9 ± 0.025 |
T-20 | 5.41 | 99.3 ± 0.033 |
T-25 | 5.42 | 99.4 ± 0.062 |
Table 1 Relative density of materials after sintering
Material | Density (g/cm3) | Relative density (%) |
---|---|---|
T-10 | 5.38 | 98.7 ± 0.003 |
T-15 | 5.39 | 98.9 ± 0.025 |
T-20 | 5.41 | 99.3 ± 0.033 |
T-25 | 5.42 | 99.4 ± 0.062 |
Fig. 5 Mechanical properties of composites made at different sintering times: a Vickers hardness, b compressive stress-strain curves, c flexural strength and flexural modulus, *p < 0.05, compared with T-10
Materials | Compressive strength (MPa) | Yield strength (MPa) | Compression rate (%) |
---|---|---|---|
T-10 | 216 ± 2.14 | 200 ± 0.34 | 5.9 ± 0.070 |
T-15 | 219 ± 1.50 | 210 ± 0.13 | 6.2 ± 0.048 |
T-20 | 226 ± 1.22 | 217 ± 0.99 | 6.5 ± 0.069 |
T-25 | 208 ± 2.90 | 200 ± 0.98 | 5.8 ± 0.109 |
Cortical bone | 130-180 [24] | 164-240 [25] | 1.81-1.89 |
Table 2 Compression properties of samples prepared at different sintering times
Materials | Compressive strength (MPa) | Yield strength (MPa) | Compression rate (%) |
---|---|---|---|
T-10 | 216 ± 2.14 | 200 ± 0.34 | 5.9 ± 0.070 |
T-15 | 219 ± 1.50 | 210 ± 0.13 | 6.2 ± 0.048 |
T-20 | 226 ± 1.22 | 217 ± 0.99 | 6.5 ± 0.069 |
T-25 | 208 ± 2.90 | 200 ± 0.98 | 5.8 ± 0.109 |
Cortical bone | 130-180 [24] | 164-240 [25] | 1.81-1.89 |
Materials | Ecorr (V) | Icorr (μA cm−2) | Rp (kΩ cm−2) |
---|---|---|---|
T-10 | − 1.198 ± 0.011 | 126.207 ± 1.345 | 5.425 ± 0.026 |
T-15 | − 1.183 ± 0.028 | 123.756 ± 2.167 | 5.548 ± 0.054 |
T-20 | − 1.180 ± 0.002 | 124.106 ± 0.894 | 5.553 ± 0.015 |
T-25 | − 1.170 ± 0.009 | 121.093 ± 1.037 | 5.687 ± 0.020 |
Table 3 Electrochemical corrosion parameters of samples in SBF
Materials | Ecorr (V) | Icorr (μA cm−2) | Rp (kΩ cm−2) |
---|---|---|---|
T-10 | − 1.198 ± 0.011 | 126.207 ± 1.345 | 5.425 ± 0.026 |
T-15 | − 1.183 ± 0.028 | 123.756 ± 2.167 | 5.548 ± 0.054 |
T-20 | − 1.180 ± 0.002 | 124.106 ± 0.894 | 5.553 ± 0.015 |
T-25 | − 1.170 ± 0.009 | 121.093 ± 1.037 | 5.687 ± 0.020 |
Fig. 8 In vitro corrosion behavior of samples after immersion: a SEM images of samples immersed in SBF solution for 7 days, b changes in hydrogen evolution during immersion, c pH value, d average corrosion rate immersion for 7 days and for 30 days, e XRD analysis of the T-20 sample after corrosion
Fig. 10 Corrosion mechanism of the core-shell structure in SBF solution: a mechanism of Mg core degradation, b galvanic corrosion between matrix and shell phase, c uniform corrosion of the Zn matrix
[1] |
X. Wang, X. Shao, T. Dai, F. Xu, J.G. Zhou, G. Qu, L. Tian, B. Liu, Y. Liu, Acta Biomater. 92, 351 (2019)
DOI URL |
[2] |
J.L. Wang, J.K. Xu, C. Hopkins, D.H.K. Chow, L. Qin, Adv. Sci. 7, 1902443 (2020)
DOI URL |
[3] |
N. Li, Y. Zheng, J. Mater. Sci. Technol. 29, 489 (2013)
DOI URL |
[4] |
W. Jahnen Dechent, M. Ketteler, Clin. Kidney J. 5, i3 (2012)
DOI URL |
[5] |
W. Pachla, S. Przybysz, A. Jarzebska, M. Bieda, K. Sztwiertnia, M. Kulczyk, J. Skiba, Bioact. Mater. 6, 26 (2021)
DOI PMID |
[6] |
D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Acta Biomater. 7, 3515 (2011)
DOI PMID |
[7] |
J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, T. Ruml, Mater. Sci. Eng. C 58, 24 (2016)
DOI URL |
[8] |
E. Jablonská, D. Vojtěch, M. Fousová, J. Kubásek, J. Lipov, J. Fojt, T. Ruml, Mater. Sci. Eng. C 68, 198 (2016)
DOI URL |
[9] |
C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li, S. Zhao, Z. Guo, Z. Pu, Y. Zheng, RSC Adv. 6, 86410 (2016)
DOI URL |
[10] |
A. Jarzębska, M. Bieda, J. Kawałko, Ł Rogal, P. Koprowski, K. Sztwiertnia, W. Pachla, M. Kulczyk, Mater. Lett. 211, 58 (2018)
DOI URL |
[11] |
H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep. 5, 10719 (2015)
DOI PMID |
[12] |
H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83, 95 (2015)
DOI URL |
[13] | H. Yang, X. Qu, W. Lin, D. Chen, D. Zhu, K. Dai, Y. Zheng, A.C.S. Biomater, Sci. Eng. 5, 453 (2019) |
[14] |
J. Kubásek, D. Dvorský, J. Čapek, J. Pinc, D. Vojtěch, Materials 12, 3930 (2019)
DOI URL |
[15] |
Z. Cui, M. Luo, Y. Zhang, D. Gong, W. Wang, J. Wang, Mater. Lett. 279, 128525 (2020)
DOI URL |
[16] |
T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)
DOI URL |
[17] | E. McCafferty, Corros. Sci. 12, 3202 (2005) |
[18] | ASTM G31-72 (2004), Standard Practice for Laboratory Immersion Corrosion Testing of Metals (ASTM International, West Conshohocken, 2004). www.astm.org. https://doi.org/10.1520/g0031-72r04 |
[19] |
Y. Meng, G. Jiang, X. Ju, J. Hao, Mater. Charact. 129, 336 (2017)
DOI URL |
[20] |
B. Rashkova, W. Prantl, R. Görgl, J. Keckes, S. Cohen, M. Bamberger, G. Dehm, Mater. Sci. Eng. A 494, 158 (2008)
DOI URL |
[21] |
K. Yan, J. Bai, H. Liu, Z.Y. Jin, J. Magnes. Alloy. 5, 336 (2017)
DOI URL |
[22] | J. Yang, J.L. Wang, Y.M. Wu, L.M. Wang, H.J. Zhang, Mater. Sci. Eng. A 460, 296 (2007) |
[23] |
V. Mamedov, Powder Metall. 45, 322 (2002)
DOI URL |
[24] |
K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006)
DOI PMID |
[25] |
H. Shao, Y. Huang, Y. Liu, Z. Xiao, Solid State Commun. 343, 114644 (2022)
DOI URL |
[26] |
X.N. Gu, Y.F. Zheng, Front. Mater. Sci. China 4, 111 (2010)
DOI URL |
[27] | H.Y. Niu, F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, H.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 362 (2020) |
[28] |
Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, Y. Dai, J. Alloys Compd. 693, 1277 (2017)
DOI URL |
[29] |
D. Noviana, D. Paramitha, M.F. Ulum, H. Hermawan, J. Orthop. Translat. 5, 9 (2016)
DOI URL |
[30] |
L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Arch. Dermatol. Res. 298, 413 (2007)
DOI URL |
[31] |
Y. Shen, W. Liu, K. Lin, H. Pan, B.W. Darvell, S. Peng, C. Wen, L. Deng, W.W. Lu, J. Chang, Langmuir 27, 2701 (2011)
DOI URL |
[32] |
W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo de Mele, Acta Biomater. 6, 1749 (2010)
DOI URL |
[33] |
Y. Liu, X. Liu, Z. Zhang, N. Farrell, D. Chen, Y. Zheng, Corros. Sci. 161, 108185 (2019)
DOI URL |
[34] |
F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, S. Delfino, Electrochim. Acta 54, 1204 (2009)
DOI URL |
[35] |
J.W. Lee, B.R. Park, S.Y. Oh, D.W. Yun, J.K. Hwang, M.S. Oh, S.J. Kim, Corros. Sci. 160, 108170 (2019)
DOI URL |
[1] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[2] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[3] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[4] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[5] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[6] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[7] | Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824. |
[8] | Yunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743. |
[9] | Jiahe Mei, Ying Han, Guoqing Zu, Weiwei Zhu, Yu Zhao, Hua Chen, Xu Ran. Achieving Superior Strength and Ductility of AlSi10Mg Alloy Fabricated by Selective Laser Melting with Large Laser Power and High Scanning Speed [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1665-1672. |
[10] | Zhen Lu, Chengcai Zhang, Nana Deng, Haiping Zhou, Ruirui Fang, Kuidong Gao, Yukuo Su, Hongbin Zhang. Influence of Selective Laser Melting Process Parameters on Microstructure and Properties of a Typical Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1673-1687. |
[11] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[12] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[13] | Jian Han, Jun Wang, Sunusi Marwana Manladan, Yangchuan Cai, Qian Wang, Zhixiong Zhu, Lisong Zhu, Lianzhong Lu, Zhengyi Jiang. Effect of Lüders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 657-667. |
[14] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[15] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||