Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (8): 1421-1437.DOI: 10.1007/s40195-024-01695-z
Previous Articles Next Articles
Linwei Li1, Donghu Zhou1, Kai Zhao1, Lifeng Jiang1, Huijun Kang1,2, Enyu Guo1,2, Feng Mao3,4, Zongning Chen1,2(), Tongmin Wang1,2()
Received:
2023-12-27
Revised:
2024-01-29
Accepted:
2024-01-30
Online:
2024-08-10
Published:
2024-06-25
Contact:
Zongning Chen, znchen@dlut.edu.cn; Tongmin Wang, tmwang@dlut.edu.cn
Linwei Li, Donghu Zhou, Kai Zhao, Lifeng Jiang, Huijun Kang, Enyu Guo, Feng Mao, Zongning Chen, Tongmin Wang. Effects of Reinforcement Content and Homogenization Treatment on the Microstructure and Mechanical Properties of in-situ TiB2/2219Al Composites[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1421-1437.
Add to citation manager EndNote|Ris|BibTeX
Designation | Cu | Mn | Zr | V | Si | Fe | Mg | Zn | Cr | Ni | Ti | B | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 (2219Al) | 6.29 | 0.34 | 0.19 | 0.13 | 0.06 | 0.20 | 0.01 | 0.01 | 0.03 | 0.02 | 0.05±0.03 | 0.01±0.01 | Bal. |
C1 | 6.32 | 0.34 | 0.19 | 0.13 | 0.06 | 0.18 | 0.01 | 0.01 | 0.02 | 0.01 | 0.76±0.10 | 0.31±0.04 | Bal. |
C3 | 6.34 | 0.35 | 0.20 | 0.14 | 0.08 | 0.20 | 0.01 | 0.01 | 0.02 | 0.01 | 1.94±0.19 | 0.84±0.07 | Bal. |
C5 | 6.33 | 0.34 | 0.19 | 0.14 | 0.09 | 0.21 | 0.01 | 0.01 | 0.02 | 0.01 | 3.19±0.26 | 1.39±0.12 | Bal. |
Deviation | 0.15 | 0.02 | 0.01 | 0.02 | 0.03 | 0.04 | 0.01 | 0.01 | 0.02 | 0.01 |
Table 1 Chemical compositions of the composites (in wt%)
Designation | Cu | Mn | Zr | V | Si | Fe | Mg | Zn | Cr | Ni | Ti | B | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 (2219Al) | 6.29 | 0.34 | 0.19 | 0.13 | 0.06 | 0.20 | 0.01 | 0.01 | 0.03 | 0.02 | 0.05±0.03 | 0.01±0.01 | Bal. |
C1 | 6.32 | 0.34 | 0.19 | 0.13 | 0.06 | 0.18 | 0.01 | 0.01 | 0.02 | 0.01 | 0.76±0.10 | 0.31±0.04 | Bal. |
C3 | 6.34 | 0.35 | 0.20 | 0.14 | 0.08 | 0.20 | 0.01 | 0.01 | 0.02 | 0.01 | 1.94±0.19 | 0.84±0.07 | Bal. |
C5 | 6.33 | 0.34 | 0.19 | 0.14 | 0.09 | 0.21 | 0.01 | 0.01 | 0.02 | 0.01 | 3.19±0.26 | 1.39±0.12 | Bal. |
Deviation | 0.15 | 0.02 | 0.01 | 0.02 | 0.03 | 0.04 | 0.01 | 0.01 | 0.02 | 0.01 |
Fig. 3 TEM images and analysis of the mixture structure of Al2Cu eutectic phase and TiB2 particles in the as-cast composite: a annular dark-field image with EDS line scanning results; b bright-field image; c1-c4 EDS mappings; d1, d2 SAED and the simulated diffraction patterns corresponding to the area A in b; e1, e2 SAED and the simulated diffraction patterns corresponding to the area B in b
Nominal index | Deviation angle (°) | Actual (simplified) index | ||||
---|---|---|---|---|---|---|
Al | TiB2 | Mismatch (%) | Al | TiB2 | m:n | |
[ | [006] | 5.96 | [ | [001] | 1:6 | |
( | ( | 2.63 | 6.45 | ( | ( | 2:3 |
( | ( | 1.23 | 2.91 | ( | ( | 1:1 |
( | ( | 6.43 | 4.60 | ( | ( | 1:1 |
(026) | ( | 6.10 | 8.45 | (013) | ( | 1:2 |
(026) | ( | 2.71 | 14.95 | (013) | ( | 2:1 |
(135) | ( | 4.08 | 0.85 | (135) | ( | 4:1 |
(244) | ( | 8.10 | 3.65 | (122) | ( | 1:2 |
(488) | ( | 1.82 | 1.56 | (122) | ( | 3:4 |
(353) | ( | 2.33 | 4.02 | (353) | ( | 1:1 |
(462) | ( | 8.85 | 3.67 | (231) | ( | 1:1 |
(462) | ( | 6.08 | 4.54 | (231) | ( | 1:2 |
Table 3 Potential orientation relationships between TiB2 particles in the mixture structure and Al matrix
Nominal index | Deviation angle (°) | Actual (simplified) index | ||||
---|---|---|---|---|---|---|
Al | TiB2 | Mismatch (%) | Al | TiB2 | m:n | |
[ | [006] | 5.96 | [ | [001] | 1:6 | |
( | ( | 2.63 | 6.45 | ( | ( | 2:3 |
( | ( | 1.23 | 2.91 | ( | ( | 1:1 |
( | ( | 6.43 | 4.60 | ( | ( | 1:1 |
(026) | ( | 6.10 | 8.45 | (013) | ( | 1:2 |
(026) | ( | 2.71 | 14.95 | (013) | ( | 2:1 |
(135) | ( | 4.08 | 0.85 | (135) | ( | 4:1 |
(244) | ( | 8.10 | 3.65 | (122) | ( | 1:2 |
(488) | ( | 1.82 | 1.56 | (122) | ( | 3:4 |
(353) | ( | 2.33 | 4.02 | (353) | ( | 1:1 |
(462) | ( | 8.85 | 3.67 | (231) | ( | 1:1 |
(462) | ( | 6.08 | 4.54 | (231) | ( | 1:2 |
Nominal index | Deviation angle (°) | Actual (simplified) index | ||||
---|---|---|---|---|---|---|
Al2Cu | TiB2 | Mismatch (%) | Al2Cu | TiB2 | m:n | |
[ | [10 10 20] | 4.55 | [ | [112] | 1:10 | |
( | ( | 4.44 | 6.15 | ( | ( | 1:3 |
( | ( | 4.03 | 10.70 | ( | ( | 4:1 |
(4 10 2) | ( | 1.64 | 2.57 | (251) | ( | 1:2 |
(3 12 9) | ( | 9.54 | 3.90 | (143) | ( | 2:3 |
(3 12 9) | ( | 5.98 | 10.74 | (143) | ( | 4:3 |
(0 6 10) | ( | 4.15 | 12.77 | (035) | ( | 3:2 |
( | ( | 1.63 | 12.42 | ( | ( | 1:1 |
( | ( | 1.63 | 2.45 | ( | ( | 1:1 |
Table 4 Potential orientation relationships between TiB2 particles and Al2Cu eutectic phase in the mixture structure
Nominal index | Deviation angle (°) | Actual (simplified) index | ||||
---|---|---|---|---|---|---|
Al2Cu | TiB2 | Mismatch (%) | Al2Cu | TiB2 | m:n | |
[ | [10 10 20] | 4.55 | [ | [112] | 1:10 | |
( | ( | 4.44 | 6.15 | ( | ( | 1:3 |
( | ( | 4.03 | 10.70 | ( | ( | 4:1 |
(4 10 2) | ( | 1.64 | 2.57 | (251) | ( | 1:2 |
(3 12 9) | ( | 9.54 | 3.90 | (143) | ( | 2:3 |
(3 12 9) | ( | 5.98 | 10.74 | (143) | ( | 4:3 |
(0 6 10) | ( | 4.15 | 12.77 | (035) | ( | 3:2 |
( | ( | 1.63 | 12.42 | ( | ( | 1:1 |
( | ( | 1.63 | 2.45 | ( | ( | 1:1 |
Fig. 5 Inverse pole figure maps of grain orientation distribution and grain size statistics of as-cast composites: a, b, f C0; c, g C1; d, h C3; e, i C5
C0 | C1 | C3 | C5 | |
---|---|---|---|---|
Onset temperature (K) | 819.2 | 818.6 | 817.5 | 815.7 |
Peak area (J/g) | 23.32 | 17.78 | 13.24 | 11.27 |
Table 5 Onset temperatures and peak areas corresponding to endothermic peak
C0 | C1 | C3 | C5 | |
---|---|---|---|---|
Onset temperature (K) | 819.2 | 818.6 | 817.5 | 815.7 |
Peak area (J/g) | 23.32 | 17.78 | 13.24 | 11.27 |
Fig. 7 Homogenization time curves: a contour figure reflecting the variation of homogenization time with the grain size and homogenization temperature; b curves of homogenization time vs. homogenization temperature of composites with different grain sizes; c, d curves of homogenization time vs. grain size of composites at different homogenization temperature
Fig. 9 SR-CT reconstruction showing the three-dimensional morphology and distribution of α-Al matrix (in yellow) and secondary phase (in blue) in homogenized TiB2/2219Al composites with varying reinforcement contents: a H0; b H1; c H3; d H5
Fig. 13 Mechanical properties of as-cast and homogenized TiB2/2219Al composites with varying reinforcement contents: a representative engineering stress-strain curves; b representative true stress-strain curves; c Vickers hardness values; d Young's moduli
UTS (MPa) | YS (MPa) | TE (%) | ||
---|---|---|---|---|
As-cast composites | C0 | 162.2±2.3 | 101.3±3.9 | 2.0±0.2 |
C1 | 205.9±2.2 | 110.2±2.4 | 4.1±0.2 | |
C3 | 228.0±4.5 | 124.0±4.8 | 4.4±0.4 | |
C5 | 221.7±3.3 | 132.0±4.1 | 2.5±0.2 | |
Homogenized composites | H0 | 259.5±4.2 | 125.1±3.0 | 6.8±0.6 |
H1 | 265.4±2.2 | 132.2±1.3 | 5.0±0.8 | |
H3 | 283.3±4.2 | 135.7±2.4 | 4.7±0.2 | |
H5 | 278.1±0.9 | 140.4±2.8 | 2.9±0.2 |
Table 6 Summary of ultimate tensile strength (UTS), yield strength (YS), and total elongation (TE) of as-cast and homogenized TiB2/2219Al composites with varying reinforcement contents
UTS (MPa) | YS (MPa) | TE (%) | ||
---|---|---|---|---|
As-cast composites | C0 | 162.2±2.3 | 101.3±3.9 | 2.0±0.2 |
C1 | 205.9±2.2 | 110.2±2.4 | 4.1±0.2 | |
C3 | 228.0±4.5 | 124.0±4.8 | 4.4±0.4 | |
C5 | 221.7±3.3 | 132.0±4.1 | 2.5±0.2 | |
Homogenized composites | H0 | 259.5±4.2 | 125.1±3.0 | 6.8±0.6 |
H1 | 265.4±2.2 | 132.2±1.3 | 5.0±0.8 | |
H3 | 283.3±4.2 | 135.7±2.4 | 4.7±0.2 | |
H5 | 278.1±0.9 | 140.4±2.8 | 2.9±0.2 |
[1] | X. Mao, Y. Yi, S. Huang, W. Guo, H. He, Met. Mater. Int. 27, 4564 (2021) |
[2] | L. Li, Z. Han, M. Gao, S. Li, H. Wang, H. Kang, E. Guo, Z. Chen, T. Wang, Mater. Sci. Eng. A 829, 142180 (2022) |
[3] | S. Mondol, S. Kumar, K. Chattopadhyay, Mater. Sci. Eng. A 759, 583 (2019) |
[4] | S. Li, X. Yue, Q. Li, H. Peng, B. Dong, T. Liu, H. Yang, J. Fan, S. Shu, F. Qiu, Q. Jiang, J. Mater. Res. Technol. 27, 944 (2023) |
[5] | Z. Wang, B. Wang, Z. Zhang, P. Xue, Y. Hao, Y. Zhao, D. Ni, G. Wang, Z. Ma, Acta Metall. Sin. -Engl. Lett. 36, 586 (2023) |
[6] | T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, T. Li, Scr. Mater. 64, 1121 (2011) |
[7] | R. Guan, D. Tie, Acta Metall. Sin. -Engl. Lett. 30, 409 (2017) |
[8] | A. Cibula, J. Inst. Met. 80, 1 (1951) |
[9] | A. Cibula, J. Inst. Met. 76, 321 (1949) |
[10] | J. Feng, Y. Han, X. Han, X. Wang, S. Song, B. Sun, M. Chen, P. Liu, J. Mater. Sci. Technol. 156, 72 (2023) |
[11] | B. Murty, S. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3 (2013) |
[12] | Y. Birol, Mater. Sci. Technol. 28, 481 (2012) |
[13] | J. Li, F. Hage, Q. Ramasse, P. Schumacher, Acta Mater. 206, 116652 (2021) |
[14] | J. Huang, K. Hao, L. Xu, Y. Han, L. Zhao, W. Ren, J. Mater. Res. Technol. 27, 194 (2023) |
[15] | Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Mater. Sci. Eng. A 605, 301 (2014) |
[16] | T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Mater. Sci. Eng. A 605, 22 (2014) |
[17] | Y. Wang, B. Yang, M. Gao, R. Guan, Mater. Sci. Eng. A 840, 142953 (2022) |
[18] | Y. Huang, C. Yang, Y. Liu, X. Liu, Y. Li, Heat Treat. Met. 41, 92 (2016) |
[19] | J. Geng, T. Hong, Y. Shen, G. Liu, C. Xia, D. Chen, M. Wang, H. Wang, Mater. Char. 124, 50 (2017) |
[20] | K. Zhao, X. Liu, Y. Fang, E. Guo, H. Kang, Z. Hao, J. Li, G. Du, L. Liu, Z. Chen, T. Wang, J. Mater. Res. Technol. 23, 5459 (2023) |
[21] | R. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T. Xiao, R. Longo, J. Synchrotron Radiat. 19, 836 (2012) |
[22] | Y. Wu, B. Liu, H. Kang, E. Guo, J. Li, G. Du, Z. Chen, T. Wang, Mater. Sci. Eng. A 840, 1 (2022) |
[23] | B. Dong, Q. Li, Z. Wang, T. Liu, H. Yang, S. Shu, L. Chen, F. Qiu, Q. Jiang, L. Zhang, Compos. Pt. B 217, 108912 (2021) |
[24] | I. Davies, A. Hellawell, Philos. Mag. 19, 1285 (1969) |
[25] | S. Wang, G. Liu, J. Wang, A. Misra, Mater. Charact. 142, 170 (2018) |
[26] | Q. Lei, B. Ramakrishnan, S. Wang, Y. Wang, J. Mazumder, A. Misra, Mater. Sci. Eng. A 706, 115 (2017) |
[27] | W. Zhu, Z. Ren, W. Ren, Y. Zhong, K. Deng, Mater. Sci. Eng. A 441, 181 (2006) |
[28] | D. Du, Y. Fautrelle, Z. Ren, R. Moreau, X. Li, Acta Mater. 121, 240 (2016) |
[29] | L. Lu, M.O. Lai, F.L. Chen, Acta Mater. 45, 4297 (1997) |
[30] | X. Liu, Q. Pan, X. Fan, Y. He, W. Li, W. Liang, J. Alloy. Compd. 484, 790 (2009) |
[31] | K. Knipling, D. Dunand, D. Seidman, Z. Für Metallkunde 97, 246 (2006) |
[32] | C. Dan, Y. Cui, Y. Wu, Z. Chen, H. Liu, G. Ji, Y. Xiao, H. Chen, M. Wang, J. Liu, L. Wang, Y. Li, A. Addad, Y. Zhou, S. Ma, Q. Shi, H. Wang, J. Lu, Nat. Mater. 22, 1182 (2023) |
[33] | Y. Wang, B. Yang, M. Gao, E. Zhao, R. Guan, Mater. Des. 220, 110849 (2022) |
[34] | H. Tang, Q. Wang, C. Luo, C. Lei, T. Liu, Z. Li, K. Wang, H. Jiang, W. Ding, Acta Metall. Sin. -Engl. Lett. 34, 98 (2021) |
[35] | F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Second Edition). (Pergamon, 2004). |
[36] | Y. Liu, B. Patterson, Acta Mater. 44, 4327 (1996) |
[37] | J. Liu, Q. Zhang, Z. Chen, L. Wang, G. Ji, Q. Shi, Y. Wu, F. Zhang, H. Wang, Mater. Sci. Eng. A 805, 140614 (2021) |
[38] | F. Wang, Y. Li, X. Xu, Y. Koizumi, K. Yamanaka, H. Bian, A. Chiba, Philos. Mag. 95, 4035 (2015) |
[39] | R. Doherty, Mater. Sci. Forum 715-716, 1 (2012) |
[40] | B. Patterson, Y. Liu, Metall. Trans. A 23, 2481 (1992) |
[41] | N. Liang, Y. Zhao, J. Alloy. Compd. 938, 168528 (2023) |
[42] | W. Hanna, K. Maung, M. Enayati, J.C. Earthman, F.A. Mohamed, Mater. Sci. Eng. A 746, 290 (2019) |
[43] | T. Liu, B. Dong, H. Yang, F. Qiu, S. Shu, Q. Jiang, J. Mater. Res. Technol. 27, 3374 (2023) |
[44] | P. Manohar, M. Ferry, T. Chandra, ISIJ Int. 38, 913 (1998) |
[45] | K. Zhao, Z. Duan, J. Liu, G. Kang, L. An, Acta Metall. Sin. -Engl. Lett. 35, 915 (2022) |
[46] | D. Pu, S. Wu, H. Yang, X. Chen, J. Li, X. Feng, K. Zheng, F. Pan, J. Mater. Res. Technol. 22, 1362 (2023) |
[47] | B. Yang, Y. Wang, M. Gao, C. Wang, R. Guan, J. Mater. Sci. Technol. 128, 195 (2022) |
[48] | B. Sahoo, D. Das, A. Chaubey, Mater. Sci. Eng. A 825, 141873 (2021) |
[49] | A. Fick, Ann. Phys.-Berlin 170, 59 (1855). |
[50] | P. Shewmon, Diffusion in Solids. (New York, 1963). |
[51] | R. Fu, Y. Huang, Y. Liu, H. Li, Z. Wang, Trans. Nonferrous Met. Soc. China 33, 2255 (2023) |
[1] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[2] | Sen Wang, Hucheng Pan, Caixia Jiang, Zhihao Zeng, Zhen Pan, Weineng Tang, Chubin Yang, Yuping Ren, Gaowu Qin. Microstructure and Mechanical Property of the Large Cross-Sectioned Mg-Gd-Y-Zn-Zr Alloy Produced by Small Extrusion Ratio [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 999-1006. |
[3] | Xuan-Hong Cai, Zhen-Hua Wang, Ben Niu, Jin-Feng Li, Qing Wang, Show authors. Microstructural Evolutions and Mechanical Properties of Energetic Al1 (TiZrNbTaMoCr)15 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 620-632. |
[4] | Chong Wang, Fuyuan Liu, Xuejian Wang, Enyu Guo, Zelong Du, Kunkun Deng, Zongning Chen, Huijun Kang, Guohao Du, Tongmin Wang. Tailoring the Microstructure and Mechanical Property of Mg-Zn Matrix Composite via the Addition of Al Element [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 438-452. |
[5] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[6] | Zeqin Cui, Lei Zhou, Xiaohu Hao, Mengda Luo, Wenxian Wang, Jianzhong Wang, Weiguo Li. Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn-Mg Composites with a Core-Shell Structure Prepared by SPS [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1305-1316. |
[7] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[8] | Shuzhan Zhang, Xianbo Shi, Yuanfei Su, Wei Yan, Lijian Rong, Ke Yang. Stress Relaxation Behavior of a Nb-Stabilized Austenitic Stainless Steel at 550 ℃ [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2079-2088. |
[9] | Nan Bian, Feng Li, Wentao Niu, Chao Li, Yuanqi Li. Dual Strengthened Control of Recrystallization Behavior on CVCDE Magnesium Alloy Containing Characteristic Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1805-1821. |
[10] | Suya Ji, Bin Liang, Chenglong Hu, Shengyang Pang, Rida Zhao, Jian Li, Sufang Tang. Mechanical Properties and Oxidation Behaviors of Self-Healing SiCf/SiC-SiBCN Composites Exposed to H2O/O2/Na2SO4 Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1909-1923. |
[11] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[12] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[13] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[14] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[15] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||