Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (1): 121-138.DOI: 10.1007/s40195-024-01760-7
Previous Articles Next Articles
Qishan Sun1,2,3, Shitong Wei1,3(), Shanping Lu1,3(
)
Received:
2024-05-19
Revised:
2024-07-01
Accepted:
2024-07-17
Online:
2025-01-10
Published:
2024-10-01
Contact:
Shitong Wei, stwei@imr.ac.cn; Shanping Lu, shplu@imr.ac.cn
Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Butt weld groove after welding; b schematic diagram of welding joints and sampling positions; c dimensions of the impact sample; d dimensions of the tensile sample; e location of microstructural characterization; f cross-section sampling position of tensile sample; g cross-section sampling position of impact sample
Welding current (A) | Welding voltage (V) | Shielding gas | Gas flow rate (L/min) | Welding speed (mm/s) | Preheating temperature (℃) | Interpass temperature (℃) |
---|---|---|---|---|---|---|
180-182 | 13-16 | 99.9% Ar | 15 | 1.7 | 250 | 150-200 |
Table 1 Welding parameters
Welding current (A) | Welding voltage (V) | Shielding gas | Gas flow rate (L/min) | Welding speed (mm/s) | Preheating temperature (℃) | Interpass temperature (℃) |
---|---|---|---|---|---|---|
180-182 | 13-16 | 99.9% Ar | 15 | 1.7 | 250 | 150-200 |
Deposited metals | C | Cr | Mn | Mo | W | N | Ni | Si | V + Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|
04C | 0.045 | 8.75 | 0.51 | 0.076 | 1.95 | 0.05 | 0.40 | 0.40 | 0.25 | Bal. |
07C | 0.073 | 8.98 | 0.53 | 0.072 | 2.00 | 0.04 | 0.41 | 0.41 | 0.25 | Bal. |
10C | 0.110 | 8.95 | 0.52 | 0.075 | 2.00 | 0.04 | 0.41 | 0.41 | 0.24 | Bal. |
Table 2 Chemical compositions of deposited metals (wt%)
Deposited metals | C | Cr | Mn | Mo | W | N | Ni | Si | V + Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|
04C | 0.045 | 8.75 | 0.51 | 0.076 | 1.95 | 0.05 | 0.40 | 0.40 | 0.25 | Bal. |
07C | 0.073 | 8.98 | 0.53 | 0.072 | 2.00 | 0.04 | 0.41 | 0.41 | 0.25 | Bal. |
10C | 0.110 | 8.95 | 0.52 | 0.075 | 2.00 | 0.04 | 0.41 | 0.41 | 0.24 | Bal. |
Fig. 2 Microstructure images of deposited metals with different carbon contents: a-c the distribution of δ in 04C, 07C, and 10C samples, respectively; d-f SEM morphology of δ in 04C, 07C, and 10C samples, respectively; g-i the difference in the number of precipitates in 04C, 07C, and 10C samples, respectively
Deposited metal | Creq | Nieq | Ferrite factor (FF) | Area fraction of δ (%) | Mean radius of M23C6(nm) | Area fraction of M23C6 (%) |
---|---|---|---|---|---|---|
04C | 12.21 | 2.98 | 9.23 | 22.97 | 35.45 | 5.75 |
07C | 12.56 | 3.71 | 8.85 | 12.04 | 39.55 | 9.41 |
10C | 12.53 | 4.70 | 7.83 | 2.33 | 58.95 | 18.6 |
Table 3 FF in deposited metals according to Schneider's formula, with corresponding statistical results of δ and precipitates
Deposited metal | Creq | Nieq | Ferrite factor (FF) | Area fraction of δ (%) | Mean radius of M23C6(nm) | Area fraction of M23C6 (%) |
---|---|---|---|---|---|---|
04C | 12.21 | 2.98 | 9.23 | 22.97 | 35.45 | 5.75 |
07C | 12.56 | 3.71 | 8.85 | 12.04 | 39.55 | 9.41 |
10C | 12.53 | 4.70 | 7.83 | 2.33 | 58.95 | 18.6 |
Fig. 4 Representative TEM bright-field (BF) and STEM results of deposited metals with different carbon contents: a-c macro-view of precipitate distribution in 04C, 07C, and 10C samples; d zoom of the red rectangle in c and the diffraction pattern of M23C6; e the semiquantitative results of M23C6
Fig. 5 EBSD maps of deposited metals with different carbon contents: a-c inverse pole figures (IPFs) of 04C, 07C, and 10C samples, respectively; d-f distribution maps of grain boundaries in 04C, 07C and 10C samples, respectively
Deposited metal | LAGB length (μm) | HAGB length (μm) | Total length (μm) |
---|---|---|---|
04C | 5581.88 | 3756.15 | 9338.03 |
07C | 7093.45 | 6349.65 | 13,446.10 |
10C | 11,917.53 | 14,461.92 | 26,379.45 |
Table 4 Grain boundaries changes of deposited metals with different C contents
Deposited metal | LAGB length (μm) | HAGB length (μm) | Total length (μm) |
---|---|---|---|
04C | 5581.88 | 3756.15 | 9338.03 |
07C | 7093.45 | 6349.65 | 13,446.10 |
10C | 11,917.53 | 14,461.92 | 26,379.45 |
Fig. 6 Tensile and impact properties of deposited metals with different carbon contents: a yield and tensile strength; b elongation; c stress-strain curve; d impact energy
Fig. 7 Thermo-calc calculation results of deposited metals: a variation of δ and γ fraction during high-temperature solidification; b variation of phase fraction of 10C sample; c Scheil non-equilibrium solidification calculation results
Fig. 9 Evolution model of δ-ferrite with decreasing temperature: a incomplete peritectic reaction; b the δ-ferrite caused by segregation of dendrites; c solid-state phase transformation
Fig. 10 Results of nanoindentation experiments of deposited metals: a the load-depth curves of δ and martensite, respectively; b enlarged images of indentations of δ and martensite, respectively
Deposited metal | Error between | ||||
---|---|---|---|---|---|
04C | 664.54 | 435.03 | 596.42 | 608.7 | 2.02% |
07C | 689.27 | 435.03 | 658.68 | 649.7 | 1.38% |
10C | 733.56 | 435.03 | 726.60 | 721.4 | 0.72% |
Table 5 Comparison of yield strength calculations for δ and martensite in the deposited metals
Deposited metal | Error between | ||||
---|---|---|---|---|---|
04C | 664.54 | 435.03 | 596.42 | 608.7 | 2.02% |
07C | 689.27 | 435.03 | 658.68 | 649.7 | 1.38% |
10C | 733.56 | 435.03 | 726.60 | 721.4 | 0.72% |
Fig. 12 Cross-sectional characterization of the tensile specimens: a, b SEM image and inverse pole figure (IPF) of the 04C sample, respectively; c 07C sample; d 10C sample
Deposited metal | Pct. of δ influence in | ||||
---|---|---|---|---|---|
04C | 258.54 | 446.66 | 99.93 | 16.4% | 608.7 |
07C | 338.40 | 494.93 | 52.38 | 8.1% | 649.7 |
10C | 440.00 | 569.63 | 10.14 | 1.4% | 721.4 |
Table 6 Comparison of yield strength calculations for δ and martensite in the deposited metals
Deposited metal | Pct. of δ influence in | ||||
---|---|---|---|---|---|
04C | 258.54 | 446.66 | 99.93 | 16.4% | 608.7 |
07C | 338.40 | 494.93 | 52.38 | 8.1% | 649.7 |
10C | 440.00 | 569.63 | 10.14 | 1.4% | 721.4 |
Fig. 14 Fracture morphologies of the impact specimens: a-c macro-morphology images and partially enlarged images of 04C, 07C and 10C samples, respectively; d-f the enlarged images of dimples in 04C, 07C and 10C samples, respectively
Fig. 15 Oscillographic impact curves and their eigenvalues results: a comparison of curves for 04C, 07C and 10C samples; b detailed division using curve 04C as an example; c absorbed impact energy in different stages
Deposited metal | Win (J) | Wstable (J) | Wunstable (J) | Wr (J) | Wt (J) | Fm (kN) | Fiu (kN) | Fiu/Fm (%) |
---|---|---|---|---|---|---|---|---|
04C | 55.22 | 75.46 | 0.86 | 4.53 | 136.06 | 20.57 | 13.39 | 65.1 |
07C | 43.04 | 28.58 | 0.78 | 12.14 | 84.54 | 22.61 | 21.57 | 95.4 |
10C | 40.05 | 60.58 | 1.42 | 12.45 | 114.05 | 22.96 | 16.48 | 71.8 |
Table 7 Impact test results of the deposited metals
Deposited metal | Win (J) | Wstable (J) | Wunstable (J) | Wr (J) | Wt (J) | Fm (kN) | Fiu (kN) | Fiu/Fm (%) |
---|---|---|---|---|---|---|---|---|
04C | 55.22 | 75.46 | 0.86 | 4.53 | 136.06 | 20.57 | 13.39 | 65.1 |
07C | 43.04 | 28.58 | 0.78 | 12.14 | 84.54 | 22.61 | 21.57 | 95.4 |
10C | 40.05 | 60.58 | 1.42 | 12.45 | 114.05 | 22.96 | 16.48 | 71.8 |
[1] | K.L. Murty, I. Charit, J. Nucl. Mater. 383, 189 (2008) |
[2] | J.S. Cheon, C.B. Lee, B.O. Lee, J.P. Raison, T. Mizuno, F. Delage, J. Carmack, J. Nucl. Mater. 392, 324 (2009) |
[3] | J. Chen, C. Liu, C. Wei, Y. Liu, H. Li, Acta Metall. Sin. -Engl. Lett. 32, 1151 (2019) |
[4] | C. Liu, M. Zhao, T. Unenbayar, Y. Zhao, B. Xie, Y. Tian, Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 32, 825 (2018) |
[5] | D. Wu, W. Tian, K. Zhang, S. Lu, Sci. Technol. Weld. Join. 28, 242 (2022) |
[6] |
G. Chakraborty, J.G. Kumar, P. Vasantharaja, C.R. Das, S.K. Albert, K. Laha, J. Mater. Eng. Perform. 28, 876 (2019)
DOI |
[7] | A.E. Korneev, A.F. Gromov, A.M. Kiselev, Met. Sci. Heat Treat. 55, 445 (2013) |
[8] | C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy, H.K. Narang, Arch. Civ. Mech. Eng. 18, 713 (2018) |
[9] | L. Ma, Y. Zhong, Q. Ma, C. Yuan, J. Tsinghua Sci. Technol. 48, 1887 ( (2008) |
[10] | J. Oñoro, J. Mater. Process. Technol. 180, 137 (2006) |
[11] | J.C. Lippold, J. Nucl. Mater. 104, 1127 (1981) |
[12] | X. Long, G. Cai, L. Svensson, Mater. Sci. Eng. A 270, 260 (1999) |
[13] | L. Schäfer, J. Nucl. Mater. 258, 1336 (1998) |
[14] | K.S. Chandravathi, K. Laha, K.B.S. Rao, S.L. Mannan, Mater. Sci. Technol. 17, 559 (2013) |
[15] | R.G. Faulkner, J.A. Williams, E.G. Sanchez, A.W. Marshall, Mater. Sci. Technol. 19, 347 (2013) |
[16] | P.J. Grobner, W.C. Hagel, Metall. Mater. Trans. A 11, 633 (1980) |
[17] | K. Anderko, L. Schäfer, E. Materna-Morris, J. Nucl. Mater. 179, 492 (1991) |
[18] |
C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, J. Nucl. Mater. 523, 510 (2019)
DOI |
[19] | D. Wu, S. Wei, S. Lu, Acta Metall. Sin. -Engl. Lett. 34, 628 (2020) |
[20] | C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Mulik, N. Saini, J.G. Thakre, Mater. Today: Proc. 5, 17080 (2018) |
[21] | S.S. Mahlalela, P.G.H. Pistorius, Weld. World 66, 1191 (2022) |
[22] | J. Liu, S. Wei, Q. Sun, C. Liu, S. Lu, J. Mater. Res. Technol. 23, 744 (2023) |
[23] | C.R. Das, S.K. Albert, A.K. Bhaduri, B.S. Murty, Metall. Mater. Trans. A 42, 3849 (2011) |
[24] | G. Chang, S. Chen, X. Yue, Q. Li, Metall. Mater. Trans. A 48, 1551 (2017) |
[25] | H. Liu, M. Zhong, Y. Shen, Z. Wang, S. Basu, C. Wang, Mater. Charact. 200, 112864 (2023) |
[26] | W. Yan, W. Sha, L. Zhu, W. Wang, Y. Shan, K. Yang, Metall. Mater. Trans. A 41, 159 (2009) |
[27] | Ž Alar, D. Mandić,Metals 8, 511 (2018) |
[28] | M. Zadra, G. Straffelini, A. Molinari, Mater. Sci. Technol. 24, 1259 (2013) |
[29] | X. Hu, N. Xiao, X. Luo, D. Li, Acta Metall. Sin. -Engl. Lett. 45, 553 (2009) |
[30] | E.J. Pavlina, C.J.V. Tyne, J. Mater. Eng. Perform. 17, 888 (2008) |
[31] | N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83, 383 (2015) |
[32] | Q. Lai, L. Brassart, O. Bouaziz, M. Gouné, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, T. Pardoen, Int. J. Plast. 80, 187 (2016) |
[33] | A.P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, L. Brassart, Acta Mater. 73, 298 (2014) |
[34] | G. Chen, J. Wan, N. He, H. Zhang, F. Han, Y. Zhang, Trans. Nonferrous Met. Soc. 28, 2395 (2018) |
[35] | S.S. Naresh, C. Goel, K. Tangri, Metall. Mater. Trans. A 16, 2013 ( (1985) |
[36] | Y. Zhao, M. Wang, Y. Lei, Y. Fan, A. Xue, X. Lin, J. Mater. Res. Technol. 28, 1597 (2024) |
[37] | E. Hornbogen, E.A. Starke Jr, Acta Mater. 41, 1 (1992) |
[38] | R. Shi, Z. Wang, L. Qiao, X. Pang, J. Mater. Sci. Technol. 35, 1940 ( (2019) |
[39] | J. Sun, S. Lu, Mater. Sci. Eng. A 806, 140758 (2021) |
[40] | W.L. Mammel, G.Y. Chin, Trans. Metall. Soc. AIME 239, 1400 (1967) |
[41] | T. Fischer, T. Zhou, C.F.O. Dahlberg, P. Hedström, Int. J. Plast. 174, 103917 (2024) |
[42] | T. Gladman, Mater. Sci. Technol. 15, 30 (2013) |
[43] | D. Hull, D.J. Bacon, Defects in Crystals, Introduction to Dislocations (Elsevier, Amsterdam, 2011), pp.1-20 |
[44] | M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Metall. Mater. Trans. A 32, 1635 (2001) |
[45] | Y. Liu, Y. Jiang, J. Xing, R. Zhou, J. Feng, J. Alloys Compd. 648, 874 (2015) |
[46] | A.S. Keh, Philos. Mag. 12, 9 (1965) |
[47] | T.K.S. Takebayashi, N. Yoshinaga, K. Ushioda, S. Ogata, ISIJ Int. 50, 875 (2010) |
[48] | C.E. Kril, R. Birringer, Philos. Mag. A 77, 621 (1998) |
[49] | G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956) |
[50] | W. Yan, W. Wang, Y. Shan, K. Yang, W. Sha, 9-12Cr Heat-Resistant Steels (Springer, Cham, 2015), pp.47-64 |
[51] | G. Alkan, D. Chae, S.J. Kim, Mater. Sci. Eng. A 585, 39 (2013) |
[52] | Y. Lin, Q. Yu, J. Pan, F. Duan, R.O. Ritchie, Y. Li, Acta Mater. 193, 125 (2020) |
[53] | L. Li, Y. Wang, Weld. J. 95, 27 (2016) |
[54] | A. Khajuria, M. Akhtar, R. Bedi, R. Kumar, M. Ghosh, C.R. Das, S.K. Albert, Mater. Sci. Technol. 36, 1407 (2020) |
[1] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[2] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[3] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[4] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[5] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[6] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[7] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[8] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[9] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[10] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[11] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[12] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[13] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[14] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[15] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||