Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (7): 1231-1237.DOI: 10.1007/s40195-024-01710-3
Previous Articles Next Articles
Yu Li1, Zhenbo Qin1(), Xiaoyang Du1, Da-Hai Xia1, Zepeng Gao1, Yiwen Zhang1,2, Zhong Wu1(
), Wenbin Hu1,3
Received:
2023-12-18
Revised:
2024-02-04
Accepted:
2024-02-15
Online:
2024-05-17
Published:
2024-05-17
Contact:
Zhenbo Qin, Zhong Wu
Yu Li, Zhenbo Qin, Xiaoyang Du, Da-Hai Xia, Zepeng Gao, Yiwen Zhang, Zhong Wu, Wenbin Hu. A Novel Approach for Rapid Evaluating Cavitation Erosion Resistance of Metallic Materials[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1231-1237.
Add to citation manager EndNote|Ris|BibTeX
Materials | 0.5 h | 2 h | 5 h | 8 h |
---|---|---|---|---|
RuT500 | 1.241 ± 0.353 | 7.377 ± 1.171 | 19.478 ± 2.440 | 32.299 ± 2.567 |
35Cr | 0.039 ± 0.006 | 0.269 ± 0.061 | 2.683 ± 0.122 | 4.878 ± 0.390 |
S32654 | 0.010 ± 0.001 | 0.049 ± 0.006 | 1.059 ± 0.135 | 2.869 ± 0.591 |
S20161 | 0.010 ± 0.001 | 0.058 ± 0.005 | 1.108 ± 0.075 | 2.466 ± 0.423 |
NAB | 0.001 ± 0.001 | 0.022 ± 0.007 | 0.486 ± 0.040 | 1.107 ± 0.216 |
Table 1 Volume loss of five materials after different cavitation times (mm3)
Materials | 0.5 h | 2 h | 5 h | 8 h |
---|---|---|---|---|
RuT500 | 1.241 ± 0.353 | 7.377 ± 1.171 | 19.478 ± 2.440 | 32.299 ± 2.567 |
35Cr | 0.039 ± 0.006 | 0.269 ± 0.061 | 2.683 ± 0.122 | 4.878 ± 0.390 |
S32654 | 0.010 ± 0.001 | 0.049 ± 0.006 | 1.059 ± 0.135 | 2.869 ± 0.591 |
S20161 | 0.010 ± 0.001 | 0.058 ± 0.005 | 1.108 ± 0.075 | 2.466 ± 0.423 |
NAB | 0.001 ± 0.001 | 0.022 ± 0.007 | 0.486 ± 0.040 | 1.107 ± 0.216 |
Fig. 1 a Cavitation volume loss of each material. SEM morphologies of sections for each material after 8-h cavitation: b RuT500; c 35Cr; d S32654; e S20161; f NAB
Fig. 2 Hardness of each material along cross section: a RuT500; b 35Cr; c S32654; d S20161; e NAB. f Relationship between volume loss and cavitation hardening rate
Materials | δ/% |
---|---|
RuT500 | 1.56 (± 0.30) |
35Cr | 8.15 (± 1.05) |
S32654 | 21.93 (± 1.57) |
S20161 | 41.85 (± 0.30) |
NAB | 52.06 (± 1.60) |
Table 2 Calculated cavitation hardening rate (δ) for different materials
Materials | δ/% |
---|---|
RuT500 | 1.56 (± 0.30) |
35Cr | 8.15 (± 1.05) |
S32654 | 21.93 (± 1.57) |
S20161 | 41.85 (± 0.30) |
NAB | 52.06 (± 1.60) |
Fig. 3 TEM images of 35Cr and S32654 before and after cavitation (a 35Cr before cavitation; b 35Cr after cavitation; c S32654 before cavitation; d S32654 after cavitation). HRTEM and strain distributions calculated by GPA of 35Cr and S32654 before and after cavitation (e 35Cr before cavitation; f 35Cr after cavitation; g S32654 before cavitation; h S32654 after cavitation). (The tensile strain is represented by the color from light to dark orange-red, while the compressive strain is depicted by the color from light to bright blue)
Materials | n |
---|---|
RuT500 | 0.2011 ± 0.0211 |
35Cr | 0.3956 ± 0.0078 |
S32654 | 0.4848 ± 0.0045 |
S20161 | 0.5474 ± 0.0068 |
NAB | 0.5950 ± 0.0133 |
Table 3 Strain hardening index fitting results of each material
Materials | n |
---|---|
RuT500 | 0.2011 ± 0.0211 |
35Cr | 0.3956 ± 0.0078 |
S32654 | 0.4848 ± 0.0045 |
S20161 | 0.5474 ± 0.0068 |
NAB | 0.5950 ± 0.0133 |
[1] | Z. Wang, B. Zhang, Wear 482-483, 203986 (2021) |
[2] | G. Taillon, F. Pougoum, S. Lavigne, L. Ton-That, R. Schulz, E. Bousser, S. Savoie, L. Martinu, J.E. Klemberg-Sapieha, Wear 364-365, 201 (2016) |
[3] | Y. Tian, H. Zhao, R. Yang, X. Liu, H. Li, X. Chen, Wear 498-499, 204344 (2022) |
[4] | M.C. Romero, A.P. Tschiptschin, C. Scandian, Wear 426-427, 518 (2019) |
[5] | S. Hattori, B.H. Sun, F.G. Hammitt, T. Okada, Wear 103, 119 (1985) |
[6] | S. Hattori, E. Nakao, Wear 249, 839 (2001) |
[7] | M. Nowakowska, L. Łatka, P. Sokołowski, M. Szala, F.L. Toma, M. Walczak, Wear 508-509, 204462 (2022) |
[8] | L.A. Espitia, H. Dong, X.Y. Li, C.E. Pinedo, A.P. Tschiptschin, Wear 332-333, 1070 (2015) |
[9] | J. Mondal, K. Das, S. Das, Wear 504-505, 204422 (2022) |
[10] | K. Peng, C. Kang, G. Li, K. Matsuda, H. Soyama, Mater. Corros. 69, 536 (2018) |
[11] | A. Krella, Surf. Coat. Technol. 204, 263 (2009) |
[12] |
I. Mitelea, I. Bordeaşu, M. Pelle, C. Crăciunescu, Ultrason. Sonochem. 23, 385 (2015)
PMID |
[13] | Y. Hong, Y. Zheng, Z. Yao, J. Mater. Sci. Technol. 25, 758 (2009) |
[14] |
D.G. Li, D.R. Chen, P. Liang, Ultrason. Sonochem. 35, 375 (2017)
DOI PMID |
[15] | Y. Li, Y. Lian, Y. Sun, Met. Mater. Int. 27, 5082 (2021) |
[16] | L. Li, Y. Qiao, L. Zhang, C. Li, Z. Liu, R. Ma, L. Yang, J. Li, Y. Zheng, Ultrason. Sonochem. 98, 106498 (2023) |
[17] | Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Y.G. Zheng, Y.X. Qiao, Acta Metall. Sin. -Engl. Lett. 30, 712 (2017) |
[18] | Z.P. Shi, Z.B. Wang, J.Q. Wang, Y.X. Qiao, H.N. Chen, T.Y. Xiong, Y.G. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 415 (2019) |
[19] | Z. Liu, S. Zhu, M. Shen, Y. Jia, W. Wang, F. Wang, J. Mater. Sci. Technol. 54, 211 (2020) |
[20] | L. Li, Y. Qiao, L. Zhang, A. Ma, E.F. Daniel, R. Ma, J. Chen, Y. Zheng, Int. J. Metall. Mater. 30, 1338 (2023) |
[21] |
L.M. Zhang, A.L. Ma, H. Yu, A.J. Umoh, Y.G. Zheng, Tribol. Int. 136, 250 (2019)
DOI |
[22] | K. Selvam, P. Mandal, H.S. Grewal, H.S. Arora, Ultrason. Sonochem. 44, 331 (2018) |
[23] | G. Gao, Z. Zhang, Wear 488-489, 204137 (2022) |
[24] | P. Lu, Z. Xu, Y. Tian, R. Yang, K. Hu, H. Li, Y. Yin, X. Chen, Materials 16, 1392 (2023) |
[25] | R.L. Howard, A. Ball, Acta Mater. 44, 3157 (1996) |
[26] | ASTM, G32-16: Standard test method for cavitation erosion using vibratory apparatus, Annual book of ASTM standards, ASTM, West Conshohocken, PA, (2016). |
[27] | M.J. Hytch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998) |
[28] | ASTM, E8M-16: Standard test methods for tension testing of metallic materials, Annual book of ASTM standards, ASTM, West Conshohocken, PA, (2016). |
[29] | X. Wang, H. Li, W. Zhang, Z. Liu, G. Wang, Z. Luo, F. Zhang, Metall. Mater. Trans. A 47, 4659 (2016) |
[30] | Z. He, B. Chen, B. Zhou, F. Liu, Q. Hu, Z. Qin, Z. Gao, W. Hu, Z. Wu, Corros. Sci. 211, 110886 (2023) |
[31] | G. Mahalle, O. Salunke, N. Kotkunde, A.K. Gupta, S.K. Singh, J. Mater. Res. Technol. 8, 2130 (2019) |
[32] | N.S. Mishra, S. Mishra, V. Ramaswamy, Metall. Trans. A 20, 2819 (1989) |
[33] | X.R. Zuo, Y.B. Chen, M.H. Wang, Mater. Res.-Ibero-am. J. Mater. 15, 915 (2012) |
[34] | I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials (Butterworth Heinemann, London, 1992) |
[35] | R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, Wear. 267, 1900 (2009) |
[1] | Zhen-Ping Shi, Zheng-Bin Wang, Ji-Qiang Wang, Yan-Xin Qiao, Huai-Ning Chen, Tian-Ying Xiong, Yu-Gui Zheng. Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 415-424. |
[2] | Qi-Ning Song, Nan Xu, Yao Tong, Chen-Ming Huang, Shou-Yu Sun, Chen-Bo Xu, Ye-Feng Bao, Yong-Feng Jiang, Yan-Xin Qiao, Zhi-Yuan Zhu, Zheng-Bin Wang. Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1470-1482. |
[3] | Qi-Ning Song, Nan Xu Ye-Feng, BaoEmail author, Yong-Feng Jiang, Wei Gu, Yu-Gui Zheng, Yan-Xin Qiao. Corrosion and Cavitation Erosion Behaviors of Two Marine Propeller Materials in Clean and Sulfide-Polluted 3.5% NaCl Solutions [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 712-720. |
[4] | D. N. He, X. F. Yin, H. Z. Thao, D. L*, X. Y. Ruan, J. L. Cheng and J. Y. Jiang 1) Shanghai Jiao Tong University, National Die & Mold CAD E. R. C, Shanghai 200030, China 2) Shanghai Vopkswagen Automotive Company Ltd., Shanghai 201805, China Manuscript received. RESEARCH ON THE EVALUATION METHOD OF FRICTION AND LUBRICATION IN DEEP DRAWING [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(2): 439-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||