Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (5): 853-866.DOI: 10.1007/s40195-021-01335-w
Previous Articles Next Articles
Jiewei Yin1, Pengcheng Xu2, Kang Wu1, Huan Zhou3, Xiao Lin1(), Lili Tan4, Huilin Yang2, Ke Yang4(
), Lei Yang1,3(
)
Received:
2021-05-17
Revised:
2021-08-24
Accepted:
2021-08-26
Online:
2022-05-10
Published:
2021-11-18
Contact:
Xiao Lin,Ke Yang,Lei Yang
About author:
Lei Yang, ylei@hebut.edu.cnJiewei Yin, Pengcheng Xu, Kang Wu, Huan Zhou, Xiao Lin, Lili Tan, Huilin Yang, Ke Yang, Lei Yang. Macroporous and Antibacterial Hydrogels Enabled by Incorporation of Mg-Cu Alloy Particles for Accelerating Skin Wound Healing[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 853-866.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Photos of hydrogels with different contents of Mg-Cu. b Foaming volume ratio of hydrogels containing different contents of Mg-Cu. Data?=?mean?±?standard deviation (n?=?3). c Compressive stress-strain curves of hydrogels. d Dependence of G’, G’’ of the hydrogels on the frequency of oscillation. e Water absorption behavior of hydrogels with different contents of Mg-Cu. Data?=?mean?±?standard deviation (n?=?3). f Water-vapor transmission rate (WVTR) of hydrogels with different contents of Mg-Cu. Data?=?mean?±?standard deviation (n?=?3). * p?<?0.05, ** p?<?0.01
Fig. 3 a X-ray diffraction patterns of hydrogels with different contents of Mg-Cu alloy immersed in deionized water for different time periods. pH values b, Mg2+ c and Cu2+ d concentrations in Hanks’ solution after soaking for different time periods
Fig. 4 a Relative proliferation rates of HUVECs and NIH/3T3 fibroblasts cultured with hydrogel extracts or cell culture media for 1 and 3 days. Data?=?mean?±?standard deviation (n?=?3). b Microscopic photographs of HUVECs cultured with hydrogel extracts or cell culture media for 0, 12, 24, 36 and 48 h, and calculated relative cell migration area. Data?=?mean?±?standard deviation (n?=?3). * p?<?0.05, ** p?<?0.01, NS: no statistical significance
Fig. 5 a Representative images of viable colonies of S. aureus, E. coli and P. aeruginosa grown on agar plates after contacting with hydrogels. b The corresponding bacterial inhibition rate of different hydrogels against S. aureus, E. coli and P. aeruginosa. Data?=?mean?±?standard deviation (n?=?3). ** p?<?0.01, NS: no statistical significance
Fig. 6 Healing of full-thickness skin defect wound with SAG hydrogels. a Photographs of wounds at 0, 5th and 15th day after treatments with commercial film dressing (Tegaderm™) (control), SAG-0MC, SAG-2M and SAG-2MC, respectively. b Wound contraction ratios of different treatment groups. Data?=?mean?±?standard deviation (n?=?3) c Representative images of H&E, Masson and CD31 immunohistochemical staining of wound tissues after different treatments at 15 days post-surgery. d-g Epidermal thickness d, granulation tissue thickness e, collagen deposition f and percentage of vessel area g at the wound site after different treatments for 15 days. Data?=?mean?±?standard deviation (n?=?3). * p?<?0.05, ** p?<?0.01, NS: no statistical significance
[1] | S. MacNeil, Mater. Today 11, 26 (2008) |
[2] | C.K. Sen, G.M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T.K. Hunt, F. Gottrup, G.C. Gurtner, M.T. Longaker, Wound Repair Regen. 17, 763 (2009) |
[3] |
J.S. Xiao, S.Y. Chen, J. Yi, H.F. Zhang, G.A. Ameer, Adv. Funct. Mater. 27, 1604872 (2017)
DOI URL |
[4] |
X. Zhao, Y.P. Liang, Y. Huang, J.H. He, Y. Han, B.L. Guo, Adv. Fun. Mater. 30, 1910748 (2020)
DOI URL |
[5] |
Y.P. Liang, B.J. Chen, M. Li, J.H. He, Z.H. Yin, B.L. Guo, Biomacromol 21, 1841 (2020)
DOI URL |
[6] |
X. Lin, Y. Liu, A.B. Bai, H.H. Cai, Y.J. Bai, W. Jiang, H.L. Yang, X.H. Wang, L. Yang, N. Sun, H.J. Gao, Nat. Biomed. Eng. 3, 632 (2019)
DOI URL |
[7] |
S.C. Zhao, L. Li, H. Wang, Y.D. Zhang, X.G. Cheng, N. Zhou, M.N. Rahaman, Z.T. Liu, W.H. Huang, C.Q. Zhang, Biomaterials 53, 379 (2015)
DOI URL |
[8] |
H.R. Hu, Y. Tang, L.B. Pang, C.L. Lin, W.H. Huang, D.P. Wang, W.T. Jia, A.C.S. Appl, Mater. Interfaces 10, 22939 (2018)
DOI URL |
[9] |
J. Xiao, Y.J. Zhou, M.Q. Ye, Y. An, K.N. Wang, Q.J. Wu, L.W. Song, J.W. Zhang, H.C. He, Q.W. Zhang, J. Wu, Adv. Healthc. Mater. 10, 2001591 (2020)
DOI URL |
[10] |
A. Chaya, S. Yoshizawa, K. Verdelis, S. Noorani, B.J. Costello, C. Sfeir, J. Oral Maxil. Surg. 73, 295 (2015)
DOI URL |
[11] |
J.L. Wang, J.K. Xu, C. Hopkins, D.H.K. Chow, L. Qin,, Adv. Sci. 7, 1902443 (2020)
DOI URL |
[12] |
M.I. Rahim, R. Eifler, B. Rais, P.P. Mueller, J. Biomed. Mater. Res. A 103, 3526 (2015)
DOI URL |
[13] |
M. Bessa-Gonalves, A.M. Silva, J.P. Brás, H. Helmholz, B.J.C. Luthringer-Feyerabend, R. Willumeit-Römer, M.A. Barbosa, S.G. Santos, Acta Biomater. 114, 471 (2020)
DOI PMID |
[14] | S. Ohta, Biochim. Biophys. Acta Gen. Subj. 1820, 586 (2012) |
[15] | X. Zhao, P. Wan, K. Yang, Y.P. Pan, Front. Bioeng. Biotech. 4, (2016) |
[16] |
C. Liu, X.K. Fu, H.B. Pan, P. Wan, L. Wang, L.L. Tan, K.H. Wang, Y. Zhao, K. Yang, P.K. Chu, Sci. Rep. 6, 27374 (2016)
DOI URL |
[17] |
X.M. Yu, M. Ibrahim, S.H. Lu, H.Z. Yang, L.L. Tan, K. Yang, Mater. Lett. 233, 35 (2018)
DOI URL |
[18] | X.D. Yan, L.L. Tan, P. Wan, M.C. Zhao, K. Yang, Aluminium Fabrication 6, 25 (2017) |
[19] |
Y. Li, L.N. Liu, P. Wan, Z.J. Zhai, Z.Y. Mao, Z.X. Ouyang, D.G. Yu, Q. Sun, L.L. Tan, L. Ren, Z.N. Zhu, Y.Q. Hao, X.H. Qu, K. Yang, K.R. Dai, Biomaterials 106, 250 (2016)
DOI PMID |
[20] |
F.H. Yang, X.F. Niu, X.N. Gu, C.P. Xu, W. Wang, Y.B. Fan, A.C.S. Appl, Mater. Interfaces 11, 23546 (2019)
DOI URL |
[21] |
W.L. Wan, Y.J. Lin, P. Shih, Y. Bow, Q.H. Cui, Y. Chang, W. Chia, H. Sung, Angew. Chem. Int. Ed. 130, 10023 (2018)
DOI URL |
[22] | X. Lin, A. Chan, X.X. Tan, H.L. Yang, L. Yang, Acta Metall. Sin. -Engl. Lett. 32, 808 (2019) |
[23] |
D.M. Carmelo, B. Paola, D. Silvia, G. Francesca, R. Alessandro, V. Giovanni, B. Paolo, J. Biomed. Mater. Res. B 106, 2763 (2018)
DOI PMID |
[24] |
X. Lin, L.L. Tan, Q. Zhang, K. Yang, Z.Q. Hu, J.H. Qiu, Y. Cai, Acta Biomater. 9, 8631 (2013)
DOI URL |
[25] | M.C. Zhao, Y.C. Zhao, D.F. Yin, S. Wang, Y.M. Shangguan, C. Liu, L.L. Tan, C.J. Shuai, K. Yang, A. Atrens, Acta Metall. Sin. -Engl. Lett. 32, 1195 (2019) |
[26] |
Y.X. Mao, P. Li, J.W. Yin, Y.J. Bai, H. Zhou, X. Lin, H.L. Yang, L. Yang, J. Mater. Sci. Technol. 63, 228 (2020)
DOI URL |
[27] |
X. Zhao, H. Wu, B.L. Guo, R.N. Dong, Y.S. Qiu, P.X. Ma, Biomaterials 122, 34 (2017)
DOI PMID |
[28] |
S.I. Erdagi, F.A. Ngwabebhoh, U. Yildiz Int. J. Biol. Macromol. 149, 651 (2020)
DOI URL |
[29] |
K.C. Chang, D.J. Lin, Y.R. Wu, C.W. Chang, C.H. Chen, C.L. Ko, W.C. Chen, Mater. Sci. Eng. C 105, 110074 (2019)
DOI URL |
[30] |
Y.B. Wu, B.L. Guo, P. Ma, Acs Macro Lett. 3, 1145 (2014)
DOI URL |
[31] |
L.C. Li, M. Yu, P. Ma, B.L. Guo, J. Mater. Chem. B 4, 471 (2015)
DOI URL |
[32] |
T.R. Tsai, T.Y. Tseng, C.F. Chen, T.H. Tsai, J. Chromatogr. A 961, 83 (2002)
DOI URL |
[33] |
Y.K. Kim, K.B. Lee, S.Y. Kim, K. Bode, Y.S. Jang, T.Y. Kwon, M.H. Jeon, M.H. Lee, Sci. Technol. Adv. Mat. 19, 324 (2018)
DOI URL |
[34] |
Z.J. Fan, B. Lin, J.Q. Wang, S.Y. Zhang, Q.Q. Lin, P.W. Gong, L.M. Ma, S.R. Yang, Adv. Funct. Mater. 24, 3933 (2014)
DOI URL |
[35] |
B. Holt, A. Tripathi, J. Morgan, J. Biomech. 41, 2689 (2008)
DOI URL |
[36] |
L.C. Li, J. Ge, P. Ma, B.L. Guo, Rsc Adv. 5, 92490 (2015)
DOI URL |
[37] | G.D. Winter, J. Wound Care 193, 366 (1995) |
[38] | X. Lin, Y.X. Mao, P. Li, Y.J. Bai, T. Chen, K. Wu, D.D. Chen, H.L. Yang, L. Yang, Adv. Sci. 8, 2004627 (2021) |
[39] |
S.C. Davis, C. Ricotti, A. Cazzaniga, E. Welsh, W.H. Eaglstein, P.M. Mertz, Wound Repair Regen. 16, 23 (2008)
DOI URL |
[40] |
M. Black, A. Trent, Y. Kostenko, J.S. Lee, C. Olive, M. Tirrell, Adv. Mater. 24, 3845 (2012)
DOI URL |
[41] |
H.J. Koo, K.H. Lim, H.J. Jung, E.H. Park, J. Ethnopharmacol. 103, 496 (2006)
DOI URL |
[42] |
Y.X. Dong, A. Sigen, M. Rodrigues, X.L. Li, S.H. Kwon, N. Kosaric, S. Khong, Y.S. Gao, W.X. Wang, G. Gurtner, Adv. Funct. Mater. 27, 1606619 (2017)
DOI URL |
[43] |
Y.M. Tang, S.H. Lin, S. Yin, F. Jiang, M.L. Zhou, G.Z. Yang, N.J. Sun, W.J. Zhang, X.Q. Jiang, Biomaterials 232, 119727 (2020)
DOI URL |
[44] | C.L. Xu, Z.H. Wei, H.J. Gao, Y.J. Bai, H.L. Liu, H.L. Yang, Y.K. Lai, L. Yang, Adv. Sci. 4, 1600410 (2017) |
[45] |
H. Ravanbakhsh, G. Bao, N. Latifi, L.G. Mongeau, Mater. Sci. Eng. C 103, 109861 (2019)
DOI URL |
[46] |
X. Lin, Y.J. Bai, H. Zhou, L. Yang, J. Mater. Sci. Technol. 59, 227 (2020)
DOI URL |
[47] |
X. Lin, J. Ge, D.L. Wei, C. Liu, L.L. Tan, H.L. Yang, K. Yang, H. Zhou, B. Li, Z.P. Luo, L. Yang, J. Orthop. Translat. 17, 121 (2019)
DOI URL |
[48] |
L. Mussoni, L. Sironi, L. Tedeschi, A.M. Calvio, S. Colli, E. Tremoli, Thromb. Haemost 86, 1292 (2001)
DOI URL |
[49] |
C.M. Wang, J. Shen, X.K. Zhang, B. Duan, J.X. Sang, J. Alloy. Compd. 714, 186 (2017)
DOI URL |
[50] | J. Cheung, M. Zhang, Biomechanical Engineering of Textiles and Clothing, ed. by Y. Li, X.Q. Dai (Woodhead, CRC, 2006), pp. 111-124 |
[51] |
L. Lamalice, F.L. Boeuf, J. Huot, Circ. Res. 100, 782 (2007)
PMID |
[52] |
C.E. Santo, D. Quaranta, G. Grass, Microbiologyopen 1, 46 (2012)
DOI URL |
[53] | Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615 (2020) |
[54] |
C.D. Benjamin, F.Y. Li, M.O. Geraldine, J.L. Marshall, P. Jiang, L.X. Zheng, S. Amber, B. Matthew, P. Stefania, F.M. Helen, J.J. Timothy, J.B. Jack, A.M. Rebecca, W.K. Taco, E.N. Kim, L.L. Carrie, N. Sunil, M. Huseyin, C.S. Helen, I.C. Jeffrey, U. Gulbu, J.L. Michael, Science 341, 186 (2013)
DOI URL |
[55] |
A. Udhab, X.X. An, R. Nava, H. Tracy, K. Shalil, C. Tom, T. Rigwed, S. Jagannathan, J.L. Kevin, B.H. David, B. Narayan, K.P. Sarah, Acta Biomater. 98, 215 (2019)
DOI URL |
[56] |
L. Jin, C.X. Chen, Y.T. Li, F. Yuan, R.L. Gong, J. Wu, H. Zhang, B. Kang, G.Y. Yuan, H. Zeng, T.X. Chen, Front. Immunol. 10, 2798 (2019)
DOI URL |
[1] | Hatice Evlen, I brahim Kadι, Mustafa Yasar. Effects of Die Corner Radius and Temperature on the Formability of AA7075-T6 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 623-629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||