Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1397-1406.DOI: 10.1007/s40195-021-01371-6
Yufeng He1,2, Shaogang Wang3, Jian Shen1(), Dong Wang1, Yuzhang Lu1, Langhong Lou1, Jian Zhang1(
)
Received:
2021-09-25
Revised:
2021-10-17
Accepted:
2021-10-22
Online:
2022-02-25
Published:
2022-02-25
Contact:
Jian Shen,Jian Zhang
About author:
Jian Zhang jianzhang@imr.ac.cnYufeng He, Shaogang Wang, Jian Shen, Dong Wang, Yuzhang Lu, Langhong Lou, Jian Zhang. Evolution of micro-pores in a single crystal nickel-based superalloy during 980 °C creep[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1397-1406.
Add to citation manager EndNote|Ris|BibTeX
Cr | Co | W | Mo | Al | Ti | Ta | C | Ni |
---|---|---|---|---|---|---|---|---|
12 | 9 | 4 | 2 | 3.4 | 4 | 4.9 | 0.05 | Bal. |
Table 1 Nominal composition of PWA 1483 (wt%)
Cr | Co | W | Mo | Al | Ti | Ta | C | Ni |
---|---|---|---|---|---|---|---|---|
12 | 9 | 4 | 2 | 3.4 | 4 | 4.9 | 0.05 | Bal. |
Creep time (h) | Npore | NS/H-pore | ND-pore | Deq of S/H-pore (μm) | Deq of D-pore (μm) |
---|---|---|---|---|---|
0 | 30 | 30 | 0 | 10.55 | - |
2 | 33 | 27 | 6 | 11.36 | 3.88 |
40 | 34 | 29 | 5 | 10.35 | 3.74 |
101 | 34 | 27 | 7 | 11.96 | 3.9 |
111 | 54 | 28 | 26 | 14.29 | 5.3 |
113 | 57 | 27 | 30 | 16.28 | 5.76 |
115 | 70 | 21 | 49 | 25.57 | 6.51 |
Table 2 Number and average equivalent diameter Deq (Deq?=?(6 V/π)1/3, V is volume of a pore) of S/H-pores and D-pores in the analyzed region (~?0.02 mm3) during creep
Creep time (h) | Npore | NS/H-pore | ND-pore | Deq of S/H-pore (μm) | Deq of D-pore (μm) |
---|---|---|---|---|---|
0 | 30 | 30 | 0 | 10.55 | - |
2 | 33 | 27 | 6 | 11.36 | 3.88 |
40 | 34 | 29 | 5 | 10.35 | 3.74 |
101 | 34 | 27 | 7 | 11.96 | 3.9 |
111 | 54 | 28 | 26 | 14.29 | 5.3 |
113 | 57 | 27 | 30 | 16.28 | 5.76 |
115 | 70 | 21 | 49 | 25.57 | 6.51 |
Fig. 4 Tomography revealing the evolution of micro-pore distribution during creep: a-d top views of the gauge section, and e-h cross sections parallel to the applied stress. a, e 0 h, b, f 90 h, c, g 111 h, d, h 115 h
Fig. 5 Statistical histograms of the evolution of the small, medium and large-sized pores during creep: a size distribution of pores, and b average growth rates of pores. The growth rate v is calculated as: v?=?(Di-Di-1)/(ti-ti-1), where Di is the average diameter of micro-pores at interrupted time i (ti)
Fig. 7 3D morphological evolution of representative a Small, b Medium, c and d Large pores at creep time of 0 h, 70 h, 101 h, 113 h, and 115 h, respectively. Numbers in brackets indicate Deq (μm) of the pores
Fig. 8 3D morphologies showing the formation of a large pore during creep: a 0 h, b 111 h, c 113 h, d 115 h. Numbers in brackets indicate Deq (μm) of the pores
Fig. 9 3D characteristics of the sample, a-d after 115 h creep and e-h at the rupture time, 115.16 h. a and e 3D macroscopic views, b and f top-view projections, c and g front-view tomograms of the gauge section along dashed line 1 in b, d and h front-view tomograms of the gauge section along dashed line 2 in b
Micro-pores | Size | Shape (S) | Number | Vol.% | Distribution | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Creep stage | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III |
Small | ↘ | → | ↗ | → | → | ↘ | → | → | ↑ | → | → | ↑ | Mostly at interdendritic region | Increase sharply in periphery | |
Medium | → | → | ↗ | → | → | ↘ | → | → | ↗ | ||||||
Large | → | → | ↑ | → | → | ↓ | → | → | ↑ |
Table 3 Variations in size, shape, number, volume fraction, and distribution of micro-pores at different creep stages. ("?→?" stands for "barely any change", "↗↘" stands for "slow increase/decrease", and "↑↓" stands for "sharp increase/decrease")
Micro-pores | Size | Shape (S) | Number | Vol.% | Distribution | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Creep stage | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III |
Small | ↘ | → | ↗ | → | → | ↘ | → | → | ↑ | → | → | ↑ | Mostly at interdendritic region | Increase sharply in periphery | |
Medium | → | → | ↗ | → | → | ↘ | → | → | ↗ | ||||||
Large | → | → | ↑ | → | → | ↓ | → | → | ↑ |
[1] | R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, |
[2] | T.M. Pollock, S. Tin, J. Propuls, Power. 22, 361 (2006) |
[3] |
J.W. Aveson, P.A. Tennant, B.J. Foss, B.A. Shollock, H.J. Stone, N. D’Souza, Acta Mater. 61, 5162 (2013)
DOI URL |
[4] |
P. Auburtin, T. Wang, S.L. Cockcroft, A. Mitchell, Metall. Mater. Trans. B 31, 801 (2000)
DOI URL |
[5] |
A. Pyzalla, B. Camin, T. Buslaps, M. Di Michiel, H. Kaminski, A. Kottar, A. Pernack, W. Reimers, Science. 308, 92 (2005)
PMID |
[6] |
C. Panwisawas, H. Mathur, J.C. Gebelin, D. Putman, C.M.F. Rae, R.C. Reed, Acta Mater. 61, 51 (2013)
DOI URL |
[7] | T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram J.S Tu in Superalloys. ed. by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (TMS, Warrendale, 1992), p. 125 |
[8] | T. Link, S. Zabler, A. Epishin, A. Haibel, M. Bansal, X. Thibault, Mater. Sci. Eng. A 425, 47 (2006) |
[9] |
B. Ruttert, C. Meid, L. Mujica Roncery, I. Lopez-Galilea, M. Bartsch, W. Theisen, Scr. Mater. 155, 139 (2018)
DOI URL |
[10] | D.L. Anton, A.F. Giamei, Mater. Sci. Eng. 76, 173 (1985) |
[11] | J. Komenda, P.J. Henderson, Scr. Mater. 37, 1821 (1997) |
[12] |
S. Roskosz, J. Adamiec, Mater. Charact. 60, 1120 (2009)
DOI URL |
[13] | J. Jaroszewicz, H. Matysiak, J. Michalski, K. Matuszewski, K. Kubiak, K.J. Kurzydlowski, Adv. Mater. Res. 278, 66 (2011) |
[14] |
E. Plancher, P. Gravier, E. Chauvet, J.J. Blandin, E. Boller, G. Martin, L. Salvo, P. Lhuissier, Acta Mater. 181, 1 (2019)
DOI |
[15] | Z. Xu, B. Britton, Y. Guo, Mater. Sci. Eng. A 806, 140800 (2021) |
[16] |
J. Lecomte-Beckers, Metall. Trans. A 19, 2341 (1988)
DOI URL |
[17] |
X. Li, L. Wang, J. Dong, L. Lou, J. Zhang, Metall. Mater. Trans. A 48, 2682 (2017)
DOI URL |
[18] |
A. Epishin, T. Link, I.L. Svetlov, G. Nolze, R.S. Neumann, H. Lucas, Int. J. Mater. Res. 104, 776 (2013)
DOI URL |
[19] |
B.S. Bokstein, A.I. Epishin, T. Link, V.A. Esin, A.O. Rodin, I.L. Svetlov, Scr. Mater. 57, 801 (2007)
DOI URL |
[20] |
H. Buck, P. Wollgramm, A.B. Parsa, G. Eggeler, Materialwiss. Werkstofftech. 46, 577 (2015)
DOI URL |
[21] | S. Utada, J. Rame, S. Hamadi, J. Delautre, P. Villechaise, J. Cormier, Mater. Sci. Eng. A 789, 139571 (2020) |
[22] | A. Isaac, F. Sket, W. Reimers, B. Camin, G. Sauthoff, A.R. Pyzalla, Mater. Sci. Eng. A 478, 108 (2008) |
[23] | J.B. le Graverend, J. Adrien, J. Cormier, Mater. Sci. Eng. A 695, 367 (2017) |
[24] | A. Epishin, T. Link, Philos. Mag. 84, 1979 (2004) |
[25] |
G. Mälzer, R.W. Hayes, T. Mack, G. Eggeler, Metall. Mater. Trans. A 38, 314 (2007)
DOI URL |
[26] |
J.B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez, Metall. Mater. Trans. A 43, 3988 (2012)
DOI URL |
[27] | R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Eng. A 448, 88 (2007) |
[28] |
M.E. Kassner, T.A. Hayes, Int. J. Plast. 19, 1715 (2003)
DOI URL |
[29] | J.W. Hancock, Met. Sci. 10, 319 (1976) |
[30] | R.S. Nelson, D.J. Mazey, R.S. Barnes, Philos. Mag. 11, 91 (1965) |
[31] |
I.W. Chen, Metall. Trans. A 14, 2289 (1983)
DOI URL |
[32] |
W.D. Nix, K.S. Yu, J.S. Wang, Metall. Trans. A 14, 563 (1983)
DOI URL |
[33] |
W. Wang, Z. Suo, J. Mech, Phys. Solids. 45, 709 (1997)
DOI URL |
[34] | J. Cormier, P. Villechaise, X. Milhet, Mater. Sci. Eng. A 501, 61 (2009) |
[35] |
Y. Liu, M. Kang, Y. Wu, M. Wang, M. Li, J. Yu, H. Gao, J. Wang, Int. J. Fatigue 108, 79 (2018)
DOI URL |
[36] |
A. Cocks, M. Ashby, Prog. Mater. Sci. 27, 189 (1982)
DOI URL |
[37] |
B. Camin, L. Hansen, Metals. 10, 1034 (2020)
DOI URL |
[38] |
R. Hales, A.C. Hill, Corros. Sci. 12, 843 (1972)
DOI URL |
[39] |
M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, U. Glatzel, Acta Mater. 58, 1607 (2010)
DOI URL |
[40] |
J. Svoboda, F.D. Fischer, P. Fratzl, Acta Mater. 54, 3043 (2006)
DOI URL |
[1] | Keli Liu, Junsheng Wang, Bing Wang, Pengcheng Mao, Yanhong Yang, Yizhou Zhou. Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 133-145. |
[2] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[3] | Dong-Fu Song, Yu-Liang Zhao, Zhi Wang, Yi-Wang Jia, Dao-Xi Li, Ya-Nan Fu, Da-Tong Zhang, Wei-Wen Zhang. 3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al-7.0Si-1.2Fe Alloys by Mn Neutralization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 163-175. |
[4] | Zihao Tan, Lin Yang, Xinguang Wang, Yunling Du, Lihua Ye, Guichen Hou, Yanhong Yang, Jinlai Liu, Jide Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. |
[5] | Zhong-Jiao Zhou,Da-Qian Yu,Li Wang,Lang-Hong Lou. Effect of Skew Angle of Holes on the Thermal Fatigue Behavior of a Ni-based Single Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 185-192. |
[6] | Tao YU, Kimiaki YOSHIDA, Huiji SHI. A 2-D mesoscopic model for the evaluation of creep damage induced by void growth in polycrystalline metals [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 213-219. |
[7] | Peng ZHAO, Fuzhen XUAN . Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 148-154. |
[8] | Y.S. Yang, X.H. Feng, G.F. Cheng, Y.J. Li , Z.Q. Hu. SOLIDIFICATION OF NICKEL-BASED SINGLE CRYSTAL SUPERALLOY BY ELECTRIC FIELD [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(6): 679-685 . |
[9] | D.H.Kim. EFFECT OF CARBON AND BORON ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A SINGLE CRYSTAL SUPERALLOY RR 2072 [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(1): 33-38 . |
[10] | T.Igari. MICRO-MACRO DAMAGE SIMULATION OF LOW-ALLOY STEEL WELDS SUBJECT TO TYPE IV CREEP FAILURE [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 393-399 . |
[11] | Z.F. Yue and Z.Z. Lu(Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China )Manuscript received. RAFTING PREDICTION CRITERION FOR NICKEL-BASE SINGLE CRYSTALS UNDER MULTIAXIAL STRESSES AND CRYSTALLOGRAPHIC ORIENTATION DEPENDENCE OF CREEP BEHAVIOR [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(2): 149-154. |
[12] | Author X.A. Zhang1), H.Q. Xia1), Z.T. Wu1), Y.F. Han1), R. Shi2) and G.X. Hu2) \= 1) Mechanical Properties Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095,China2) The State Education Commission Open Research Laboratory for High Temperature. STUDY ON THE THREESTAGE CREEP OF THE DD3SINGLE CRYSTAL SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 116-123. |
[13] | Author C.D. Zhou1,2), J.X. Yu1), X.P. Dong1), Y.H. Zhang1), C.Q. Sun3) and T.F. Li4) 1) The State Education Commission Open Research Laboratory for High Temperature Materials and Testing, Shanghai Jiao Tong University, Shanghai 200030, China2) Shanghai Enhanced Lab of Ferrometallurgy, Shanghai University, Shanghai 200072, China3) Institute of Aeronautical Materials, Beijing 100095, China 4) Institute of Corrosion and Protection of Metals, The Chinese Academy of Sciences, Shenyang 110015, ChinaManuscript received 18 October 1998. HIGH TEMPERATURE TENSILE FRACTURE BEHAVIOR OF ORIENTED DD100 SINGLE CRYSTAL SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 124-129. |
[14] | Z.D. Wang; Y. Qiao; B.S. Zhou and D.O. Wu (College of Mechanical Engineering, East China University of Science & Technology, Shanghai 200237, China). A DCPD TECHNIQUE FOR LOCALIZED CREEP DAMAGE IN NOTCHED BARS [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(6): 456-462. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||