Acta Metallurgica Sinica (English Letters) ›› 2011, Vol. 24 ›› Issue (2): 148-154.DOI: 10.11890/1006-7191-112-148

Previous Articles     Next Articles

Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling

Peng ZHAO, Fuzhen XUAN   

  1. Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2010-12-01 Revised:2011-02-23 Online:2011-04-25 Published:2011-04-20
  • Contact: Fuzhen XUAN

Abstract: Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.

Key words: Creep-fatigue, Creep damage, 9%-12%Cr steels, Stress control, Time fraction rule