Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (7): 963-972.DOI: 10.1007/s40195-020-01184-z
Previous Articles Next Articles
Fuzhao Yan1,2, Jing Li1(), Yiyi Li1, Liangyin Xiong1, Shi Liu1(
)
Received:
2020-07-21
Revised:
2020-09-03
Accepted:
2020-10-10
Online:
2021-01-07
Published:
2021-01-07
Contact:
Jing Li,Shi Liu
About author:
Shi Liu, sliu@imr.ac.cnFuzhao Yan, Jing Li, Yiyi Li, Liangyin Xiong, Shi Liu. Formation Mechanism of Nanoparticles in Fe-Cr-Al ODS Alloy Fabricated by Direct Oxidation Method[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 963-972.
Add to citation manager EndNote|Ris|BibTeX
Powder | Fe | Cr | Al | Y | Ti |
---|---|---|---|---|---|
Fe-Cr-Al | Bal. | 13.95 | 4.16 | 0.47 | 0.55 |
Table 1 Chemical composition of the atomized powder (wt%)
Powder | Fe | Cr | Al | Y | Ti |
---|---|---|---|---|---|
Fe-Cr-Al | Bal. | 13.95 | 4.16 | 0.47 | 0.55 |
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 71.7 | 15.0 | 6.2 | 2.0 | 1.3 | 3.8 |
2 | 79.90 | 14.11 | 4.22 | 0.1 | 0 | 1.67 |
3 | 75.52 | 14.94 | 4.33 | 1.10 | 1.01 | 3.1 |
4 | 74.7 | 14.71 | 5.69 | 0.01 | 0.67 | 4.22 |
Table 2 Composition of the surface of powder 14Cr-A (wt%)
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 71.7 | 15.0 | 6.2 | 2.0 | 1.3 | 3.8 |
2 | 79.90 | 14.11 | 4.22 | 0.1 | 0 | 1.67 |
3 | 75.52 | 14.94 | 4.33 | 1.10 | 1.01 | 3.1 |
4 | 74.7 | 14.71 | 5.69 | 0.01 | 0.67 | 4.22 |
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 75.0 | 11.1 | 7.9 | 2.3 | 0.5 | 3.2 |
2 | 76.2 | 13.2 | 5.7 | 0 | 0.8 | 4.1 |
3 | 78.9 | 13.3 | 5.8 | 0.1 | 0.2 | 1.7 |
4 | 78.8 | 11.7 | 6.8 | 0 | 0.5 | 2.2 |
Table 3 Composition of the surface of powder 14Cr-B (wt%)
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 75.0 | 11.1 | 7.9 | 2.3 | 0.5 | 3.2 |
2 | 76.2 | 13.2 | 5.7 | 0 | 0.8 | 4.1 |
3 | 78.9 | 13.3 | 5.8 | 0.1 | 0.2 | 1.7 |
4 | 78.8 | 11.7 | 6.8 | 0 | 0.5 | 2.2 |
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 43.2 | 10.5 | 21.1 | 0.6 | 0.2 | 24.4 |
2 | 54.7 | 11.9 | 17.4 | 0 | 0.4 | 15.6 |
3 | 53.5 | 11.4 | 16.8 | 1.4 | 0.3 | 16.6 |
4 | 55.4 | 12.6 | 15.7 | 0.1 | 0.3 | 15.9 |
Table 4 Composition of the surface of powder 14Cr-C (wt%)
Point | Fe | Cr | Al | Y | Ti | O |
---|---|---|---|---|---|---|
1 | 43.2 | 10.5 | 21.1 | 0.6 | 0.2 | 24.4 |
2 | 54.7 | 11.9 | 17.4 | 0 | 0.4 | 15.6 |
3 | 53.5 | 11.4 | 16.8 | 1.4 | 0.3 | 16.6 |
4 | 55.4 | 12.6 | 15.7 | 0.1 | 0.3 | 15.9 |
Fig. 8 TEM/HRTEM results of the as-HIPed alloy: a bright field image of nanoparticles, b particle size distribution of nanoparticles, c EDS energy spectrum and composition of particle 1 in a, d FFT pattern of particle 2 in a
d (Å), α (°) | d1 (011) | d2 (121) | d3 (110) | α12 | α23 |
---|---|---|---|---|---|
Measured | 5.357 | 4.469 | 7.135 | 35.48 | 54.58 |
YAlO3 | 5.329 | 4.318 | 7.137 | 35.86 | 54.14 |
Table 5 Inter-planar spacing (d) and angles (α) of particle 2 and the possible indexing
d (Å), α (°) | d1 (011) | d2 (121) | d3 (110) | α12 | α23 |
---|---|---|---|---|---|
Measured | 5.357 | 4.469 | 7.135 | 35.48 | 54.58 |
YAlO3 | 5.329 | 4.318 | 7.137 | 35.86 | 54.14 |
Fig. 11 Schematic diagram for the formation process of oxide nanoparticles: a after direct oxidation, b during heating, cafter HIPing. For illustrative purposes, a small amount of chromium oxide on the surface is ignored
[1] | T. Allen, J. Busby, M. Meyer, D. Petti , Mater. Today 13, 14 (2010) |
[2] | S.K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski, I. Manna , Mater. Sci. Eng. A 528, 7475 (2011) |
[3] |
P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe , Acta Mater. 59, 992(2011)
DOI URL |
[4] |
A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe , J. Nucl. Mater. 417, 176(2011)
DOI URL |
[5] |
H. Shibata, S. Ukai, N.H. Oono, K. Sakamoto, M. Hirai , J. Nucl. Mater. 502, 228(2018)
DOI URL |
[6] |
S.J. Zinkle, G.S. Was , Acta Mater. 61, 735(2013)
DOI URL |
[7] |
Z. Zhang, W. Pantleon , Acta Mater. 149, 235(2018)
DOI URL |
[8] |
Q. Zhao, L. Yu, Y. Liu, Y. Huang, Q. Guo, H. Li, J. Wu , Powder Technol. 311, 449(2017)
DOI URL |
[9] | C. Suryanarayana, E. Ivanov , Adv. Powder Metall. 3, 42(2013) |
[10] |
Z. Hong, X. Zhang, Q. Yan, Y. Chen , J. Alloys Compd. 770, 831(2019)
DOI URL |
[11] | L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller , J. Nucl. Mater. 329-333, 166(2004) |
[12] |
J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, E. Haney , J. Nucl. Mater. 428, 65(2012)
DOI URL |
[13] |
E. Gil, J. Cortés, I. Iturriza, N. Ordás , Appl. Surf. Sci. 427, 182(2018)
DOI URL |
[14] | E. Gil, N. Ordás, C. García-Rosales, I. Iturriza , Fusion Eng. Des. 98-99, 1973 (2015) |
[15] | J. Li, S. Wu, P. Ma, Y. Yang, E. Wu, L. Xiong, S. Liu , Mater. Sci. Eng. A 757, 42 (2019) |
[16] |
R.J. Miller, A. Gangulee , J. Vac. Sci. Technol. 15, 244(1978)
DOI URL |
[17] |
K. Nakamura, M. Kamoshida , J. Appl. Phys. 48, 5349(1977)
DOI URL |
[18] |
C.M. Wang, G.S. Cargill, H.M. Chan, M.P. Harmer , Acta Mater. 48, 2579(2000)
DOI URL |
[19] |
A.M. Thompson, K.K. Soni, H.M. Chan, M.P. Harmer, D.B. Williams, J.M. Chabala, R. Levi-Setti , J. Am. Ceram. Soc. 80, 373(1997)
DOI URL |
[20] | C.L. Briant, K.L. Luthra , Metall. Trans. A 19 A, 2099 ( 1988) |
[21] | J. Wang, S. Liu, X. Bai, X. Zhou, X. Han , Vacuum 173, 109144 (2020) |
[22] | C.L. Briant, R.A. Mulford , Metall. Trans. A 13, 745 (1982) |
[23] |
L.P.H. Surf. Sci. 506, 313(2002)
DOI URL |
[24] |
S. Wu, J. Li, W. Li, S. Liu , J. Alloys Compd. 814, 152282(2020)
DOI URL |
[25] | C.L. Chen, Y.M. Dong , Mater. Sci. Eng. A 528, 8374 (2011) |
[26] |
K. Nomura, Y. Ujihira , J. Mater. Sci. 25, 1745(1990)
DOI URL |
[27] |
T. Kosaka, S. Suzuki, H. Inoue, M. Saito, Y. Waseda, E. Matsubara , Appl. Surf. Sci. 103, 55(1996)
DOI URL |
[28] |
G. Betz, G.K. Wehner, L. Toth, A. Joshi , J. Appl. Phys. 45, 5312(1974)
DOI URL |
[29] |
M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, J. Eur. Ceram. Soc. 26, 3515(2006)
DOI URL |
[30] |
D. Pazos, M. Suárez, A. Fernández, P. Fernández, I. Iturriza, N. Ordás , Fusion Eng. Des. 146, 2328(2019)
DOI URL |
[31] |
K. Dawson, S.J. Haigh, G.J. Tatlock, A.R. Jones , J. Nucl. Mater. 464, 200(2015)
DOI URL |
[1] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[2] | Jiang-Li Ning, Bo Xu, Yun-Li Feng, Xu-Dong Li, Xin-Kang Li, Wei-Ping Tong. Tension-Compression Yield Asymmetry Influenced by the Variable Deformation Modes in Gradient Structure Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 252-266. |
[3] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[4] | Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525. |
[5] | Zhao-Yang Jin, Nan-Nan Li, Kai Yan, Jian Wang, Jing Bai, Hongbiao Dong. Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31 [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 71-81. |
[6] | Guang-Di Zhao, Guo-Liang Yang, Fang Liu, Xin, Wen-Ru Sun. Transformation Mechanism of (γ + γ′) and the Effect of Cooling Rate on the Final Solidification of U720Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 887-894. |
[7] | Jian-Li Wang, Wei Yang, Da-Peng Xu, Xiao-Fei Yao. Effect of K2TiO(C2O4)2 Addition in Electrolyte on the Microstructure and Tribological Behavior of Micro-Arc Oxidation Coatings on Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1109-1118. |
[8] | Guang-Jie Feng, Zhuo-Ran Li, Rui-Hua Liu, Shi-Cheng Feng. Effects of Joining Conditions on Microstructure and Mechanical Properties of Cf/Al Composites and TiAl Alloy Combustion Synthesis Joints [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 405-413. |
[9] | Linxiu Du, Shengjie Yao, Jun Hu, Huifang Lan, Hui Xie, Guodong Wang. Fabrication and Microstructural Control of Nano-structured Bulk Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 508-520. |
[10] | Yulong Zhao, Zheng Chen, Jian Long, Tao Yang. Influence of Temperature on the Inverse Hall–Petch Effect in Nanocrystalline Materials: Phase Field Crystal Simulation [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 81-86. |
[11] | Y. Q. Zhao; L. Zhou and J. Deng (Northwest Institute for Nonferrous Metal Research, P. O. Box 51 Xi' an, Shaanxi 710016, China). HIGH TEMPERATURE DEFORMATION MECHANISM AND CONSTITUTIVE EQUATION OF Ti-40 BUREN RESISTANT TITANIUM ALLOY [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 406-410. |
[12] | C.Z. Chen1,2) , T.Q. Lei2) , D.W. Cui1)and J.H. Yu1) 1) College of MaterialScience and Technology ,Shandong University of Technology,Jinan 250061 , China2) College of MaterialScience and Technology , Harbin Institute of Technology ,Harbin 150001 ,China. MICROSTRUCTURE AND FORMATION MECHANISM OF LASER CLAD Ni60ACOATING [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(4): 649-652. |
[13] | W.H. Tian; S.L. Hu and M. Nemoto(1) Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, China 2) Department of Materials Forming, University of Science and Technology Beijing, Beijing 100083, China 3) Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan)Manuscript received in revised form 12 October 1998. EFFECT OF Cr ADDITION ON MICROSTRVCTURES AND MECHANICAL PROPERLIES OF β-NiAl ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(2): 173-180. |
[14] | W. H. Tian;S.L. Hu and M. Nemoto(Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, China)(Department of Materials Forming, University of Science and Technology Beijing, Beijing 100083, China)(Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan). HARDENING OF L1_2-ORDERED Co_3Ti BY PRECIPITATION OF FCC-Co PHASE [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(1): 33-38. |
[15] | B. Yang; Y.Q. Wang; J. Zhang and B.L. Zhou(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China)(Nanchang University, Nanchang 330029, China)(International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China). INVESTIGATION ON THE FORMATION MECHANISM OF TITANIUM CARBIDE PREPARED BY IN SITU REACTION IN MOLTEN ALUMINUM [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(6): 485-488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||