Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (10): 1369-1378.DOI: 10.1007/s40195-020-01063-7
Previous Articles Next Articles
Zhixiong Zhu1(), Xingxu Jiang1, Gang Wei1, Xiaogang Fang1, Zhihong Zhong1, Kuijing Song1, Jian Han2, Zhengyi Jiang3(
)
Received:
2019-11-18
Revised:
2020-04-14
Online:
2020-10-10
Published:
2020-10-20
Contact:
Zhixiong Zhu,Zhengyi Jiang
Zhixiong Zhu, Xingxu Jiang, Gang Wei, Xiaogang Fang, Zhihong Zhong, Kuijing Song, Jian Han, Zhengyi Jiang. Influence of Zn Content on Microstructures, Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1369-1378.
Add to citation manager EndNote|Ris|BibTeX
Alloy No. | Zn | Mg | Mn | Cr | Si | Fe | Al |
---|---|---|---|---|---|---|---|
1 | 0.00 | 4.47 | 0.70 | 0.152 | < 0.02 | < 0.02 | Bal. |
2 | 0.25 | 4.50 | 0.70 | 0.152 | < 0.02 | < 0.02 | Bal. |
3 | 0.50 | 4.48 | 0.71 | 0.146 | < 0.02 | < 0.02 | Bal. |
4 | 0.75 | 4.49 | 0.68 | 0.151 | < 0.02 | < 0.02 | Bal. |
Table 1 Chemical composition of the studied AA5083 alloys with various Zn contents (wt.%)
Alloy No. | Zn | Mg | Mn | Cr | Si | Fe | Al |
---|---|---|---|---|---|---|---|
1 | 0.00 | 4.47 | 0.70 | 0.152 | < 0.02 | < 0.02 | Bal. |
2 | 0.25 | 4.50 | 0.70 | 0.152 | < 0.02 | < 0.02 | Bal. |
3 | 0.50 | 4.48 | 0.71 | 0.146 | < 0.02 | < 0.02 | Bal. |
4 | 0.75 | 4.49 | 0.68 | 0.151 | < 0.02 | < 0.02 | Bal. |
Fig. 1 Typical microstructure of the AA5083 alloy (0.25% Zn content): a three-dimensional micrograph, b band contrast map imposed on grain boundary map
Zn (wt.%) | Hardness (HV0.1) | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
0 | 88 | 168 | 295 | 23 |
0.25 | 88 | 155 | 277 | 25 |
0.50 | 84 | 162 | 295 | 23 |
0.75 | 87 | 160 | 285 | 18 |
Table 2 Mechanical properties and tensile properties of the AA5083 alloys with various Zn contents
Zn (wt.%) | Hardness (HV0.1) | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
0 | 88 | 168 | 295 | 23 |
0.25 | 88 | 155 | 277 | 25 |
0.50 | 84 | 162 | 295 | 23 |
0.75 | 87 | 160 | 285 | 18 |
Fig. 4 SEM images of the fractured surfaces after tensile tests of the AA5083 alloys with various Zn contents: a 0%, b 0.25%, c 0.50%, d 0.75% (in wt.%)
Zn (wt.%) | Strength (MPa) | Elongation (%) | Breaking time (h) | |||
---|---|---|---|---|---|---|
In air | In 3.5% NaCl | In air | In 3.5% NaCl | In air | In 3.5% NaCl | |
0 | 310 | 301 | 35 | 15 | 147 | 81 |
0.25 | 307 | 298 | 39 | 19 | 161 | 96 |
0.50 | 330 | 323 | 44 | 34 | 156 | 130 |
0.75 | 328 | 297 | 47 | 18 | 172 | 88 |
Table 3 UTS, elongation and breaking time of the AA5083 alloys with various Zn contents obtained from SSRT
Zn (wt.%) | Strength (MPa) | Elongation (%) | Breaking time (h) | |||
---|---|---|---|---|---|---|
In air | In 3.5% NaCl | In air | In 3.5% NaCl | In air | In 3.5% NaCl | |
0 | 310 | 301 | 35 | 15 | 147 | 81 |
0.25 | 307 | 298 | 39 | 19 | 161 | 96 |
0.50 | 330 | 323 | 44 | 34 | 156 | 130 |
0.75 | 328 | 297 | 47 | 18 | 172 | 88 |
Fig. 6 Fractured surfaces (SSRT in 3.5 wt.% NaCl aqueous solution) of the AA5083 alloys with various Zn contents: a 0%, b 0.25%, c 0.50%, d 0.75% (in wt.%)
Zn (wt.%) | Potential (V) |
---|---|
0 | 0.94 |
0.25 | 1.22 |
0.50 | 1.26 |
0.75 | 1.13 |
Table 4 Surface potential of the AA5083 alloys with various Zn contents
Zn (wt.%) | Potential (V) |
---|---|
0 | 0.94 |
0.25 | 1.22 |
0.50 | 1.26 |
0.75 | 1.13 |
Zn (wt.%) | Iδ | σδ | t | ISSRT |
---|---|---|---|---|
0 | 0.57 | 0.03 | 0.55 | 0.17 |
0.25 | 0.51 | 0.03 | 0.60 | 0.17 |
0.50 | 0.23 | 0.02 | 0.83 | 0.09 |
0.75 | 0.62 | 0.09 | 0.51 | 0.27 |
Table 5 Elongation loss Iδ, the strength loss σδ, the ratio of breaking time t and SCC index ISSRT of the AA5083 alloys with various Zn contents
Zn (wt.%) | Iδ | σδ | t | ISSRT |
---|---|---|---|---|
0 | 0.57 | 0.03 | 0.55 | 0.17 |
0.25 | 0.51 | 0.03 | 0.60 | 0.17 |
0.50 | 0.23 | 0.02 | 0.83 | 0.09 |
0.75 | 0.62 | 0.09 | 0.51 | 0.27 |
[1] | J.K. Brosi, Scr. Mater. 63, 799(2010) |
[2] | Y.K. Yang, T.R. Allen, Metall. Mater. Trans. A 44, 5226 (2013) |
[3] | M. Popović, E. Romhanji, J. Mater. Process. Technol. 125, 275(2002) |
[4] | R.H. Jones, D.R. Baer, M.J. Danielson, Metall. Mater. 32, 1699(2001) |
[5] | G. Yi, D.A. Cullen, A.T. Derrick, Y. Zhu, E. Sundberg, Corrosion 72, 177 (2015) |
[6] | R. Zhang, S.P. Knight, R.L. Holtz, R. Goswami, C.H.J. Davies, N. Birbilis, Corrosion 72, 144 (2016) |
[7] | Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, D. Zhou, J. Alloys Compd. 610, 27(2014) |
[8] | Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S.V. Divinski, G. Wilde, Acta Mater. 124, 210(2017) |
[9] | A.K. Lohar, B. Mondal, D. Rafaja, V. Klemm, S.C. Panigrahi, Mater. Charact. 60, 1387(2009) |
[10] | M.K. Cavanaugh, N. Birbilis, R.G. Buchheit, F. Bovard, Scr. Mater. 56, 995(2007) |
[11] | H.C. Fang, H. Chao, K.H. Chen, Mater. Sci. Eng. A 610, 10 (2014) |
[12] | S. Lin, Z. Nie, H. Huang, B. Li, Mater. Des. 31, 1607(2010) |
[13] | D. Yang, X. Li, D. He, H. Huang, Mater. Sci. Eng. A 561, 226 (2013) |
[14] | L. Yang, Dissertation, Central South University, 2012 |
[15] | C. Meng, D. Zhang, L. Zhuang, J. Alloys Compd. 655, 178(2016) |
[16] | S.W. Dean, J. ASTM Int. 4, 1(2007) |
[17] | P.R. Rios, G.S. Fonseca, Scr. Mater. 50, 71(2004) |
[18] | G. Yi, B. Sun, J.D. Poplawsky, Y. Zhu, J. Alloys Compd. 740, 461(2017) |
[19] | X. Zhang, L. Zhong, M. Chen, Chin. J. Nonferrous Met. 16, 1743(2006) |
[20] | M.C. Carroll, R.G. Buchheit, Mater. Sci. Forum 396, 1443 (2002) |
[21] | G.V. Boven, W. Chen, Acta Mater. 55, 29(2007) |
[22] | T. Burleigh, Corrosion 47, 89 (1991) |
[23] | G. Scamans, N. Holroyd, Corros. Sci. 27, 329(1987) |
[24] | R. Ricker, Metall. Trans. A 19, 1775 (1988) |
[25] | C.B. Crane, R.P. Gangloff, Corrosion 72, 221 (2015) |
[26] | R.H. Jones, JOM 55, 42 (2003) |
[27] | J. Chang, T. Chuang, J. Mater. Eng. Perform. 9, 253(2000) |
[28] |
R. Goswami, G. Spanos, P. Pao, Mater. Sci. Eng. A 527, 1089 (2010)
DOI URL |
[1] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[2] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[3] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[4] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[5] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[6] | Yongkui Li, Jianxin Lou, Hongtao Ju, Li Lin. Impact Toughness of Heat-Affected Zones of 11Cr Heat-Resistant Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 821-827. |
[7] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
[8] | Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 716-730. |
[9] | Tao Xiao, Xiao-Fei Sheng, Qian Lei, Jia-Lun Zhu, Sheng-Yao Li, Ze-Ru Liu, Zhou Li. Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 375-384. |
[10] | Fengjiao Niu, Jianghua Chen, Cuilan Wu, Jing Wu, Xiandong Xu, Pan Xie, Xiongwei Yu. Improved Properties in Relation to Fine Precipitate Microstructures Tailored by Combinatorial Processes in an Al-Cu-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1527-1534. |
[11] | Chao Xu, Taiki Nakata, Guo-Hua Fan, Kosuke Yamanaka, Guang-Ze Tang, Lin Geng, Shigeharu Kamado. Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 205-217. |
[12] | Jin-Jin Zhao, Xian-Bin Liu, Shuai Hu, En-Hou Han. Effect of Cl- Concentration on the SCC Behavior of 13Cr Stainless Steel in High-Pressure CO2 Environment [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1459-1469. |
[13] | Tie-Shan Cao, Cong-Qian Cheng, Jie Zhao, Hui Wang. Precipitation Behavior of σ Phase in Ultra-Supercritical Boiler Applied HR3C Heat-Resistant Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1355-1361. |
[14] | Erfan Abbasi, Quanshun Luo, Dave Owens. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 74-88. |
[15] | Ke Zhang, Hui Wang, Xin-Jun Sun, Feng-Li Sui, Zhao-Dong Li, En-Xiang Pu, Zheng-Hai Zhu, Zhen-Yi Huang, Hong-Bo Pan, Qi-Long Yong. Precipitation Behavior and Microstructural Evolution of Ferritic Ti-V-Mo Complex Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 997-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||