Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (1): 1-18.DOI: 10.1007/s40195-017-0658-4
Special Issue: 2017-2018铝合金专辑; 2017-2018焊接专辑; 2018年铝合金专辑; 2018-2019焊接专辑
• Orginal Article • Next Articles
Saad B. Aziz1, Mohammad W. Dewan1, Daniel J. Huggett1, Muhammad A. Wahab1(), Ayman M. Okeil2, T. Warren Liao1
Received:
2017-06-24
Online:
2018-01-20
Published:
2018-02-08
Saad B. Aziz, Mohammad W. Dewan, Daniel J. Huggett, Muhammad A. Wahab, Ayman M. Okeil, T. Warren Liao. A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 1-18.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic representation of friction stir welding (FSW) process [2] In FSW, heat generation occurs in three distinct stages: plunge, dwell, and travel. During the dwell stage, the position of the pintool remains the same at the end of the plunge stage without changing the rotation speed. Additional heat is generated from the shoulder-workpiece interface, which raises the temperature of the workpiece close to its melting temperature. The two main sources of heat generation are: (1) the friction between pintool and workpiece and (2) plastic deformation of the workpiece material.
Element | Ti | Zn | Fe | V | Cu | Mn | Zr | Si | Mg |
---|---|---|---|---|---|---|---|---|---|
wt% | 0.10 | 0.10 | 0.30 | 0.15 | 6.8 | 0.40 | 0.25 | 0.20 | 0.02 |
Table 1 Chemical compositions (wt%) of AA2219
Element | Ti | Zn | Fe | V | Cu | Mn | Zr | Si | Mg |
---|---|---|---|---|---|---|---|---|---|
wt% | 0.10 | 0.10 | 0.30 | 0.15 | 6.8 | 0.40 | 0.25 | 0.20 | 0.02 |
A (MPa) | B (MPa) | n | m | Melting temperature (°C) [ | Reference temp (°C) |
---|---|---|---|---|---|
369 | 684 | 0.73 | 1.7 | 543 | 25 |
Table 2 Johnson-Cook material plastic model input [27]
A (MPa) | B (MPa) | n | m | Melting temperature (°C) [ | Reference temp (°C) |
---|---|---|---|---|---|
369 | 684 | 0.73 | 1.7 | 543 | 25 |
Step | Time duration of the step | Boundary condition |
---|---|---|
Plunging | 15.2 s | Displacement in y-axis, rotation in y-axis |
Dwelling | 0.1 s | Rotation in y-axis |
Traversing | 20 s | Rotation in y-axis movement in x-axis |
Table 3 Simulation details for three steps (Plunge, Dwell, and Traverse)
Step | Time duration of the step | Boundary condition |
---|---|---|
Plunging | 15.2 s | Displacement in y-axis, rotation in y-axis |
Dwelling | 0.1 s | Rotation in y-axis |
Traversing | 20 s | Rotation in y-axis movement in x-axis |
Temperature (°C) | Friction coefficient |
---|---|
25 | 0.30 |
300 | 0.25 |
420 | 0.20 |
543 | 0.01 |
Table 4 Friction coefficient (temperature dependent) used in present model
Temperature (°C) | Friction coefficient |
---|---|
25 | 0.30 |
300 | 0.25 |
420 | 0.20 |
543 | 0.01 |
Weld schedule | Rotational speed, \({ N }\)(rpm) | Weld speed, v (mm/s) |
---|---|---|
Case-1 | 350 | 1.27 |
Case-2 | 350 | 2.54 |
Table 5 Weld schedule used in temperature validation
Weld schedule | Rotational speed, \({ N }\)(rpm) | Weld speed, v (mm/s) |
---|---|---|
Case-1 | 350 | 1.27 |
Case-2 | 350 | 2.54 |
Distance from weld center (mm) | Temperature from FEA (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 406.7 | 422 | 3.6 |
15 | 318.0 | 345 | 7.8 |
26 | 227.2 | 248 | 8.3 |
32 | 208.5 | 231 | 9.7 |
39 | 200.4 | 214 | 6.3 |
Average error | 7.1 |
Table 6 Error analysis for weld schedule Case-1 along transverse direction
Distance from weld center (mm) | Temperature from FEA (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 406.7 | 422 | 3.6 |
15 | 318.0 | 345 | 7.8 |
26 | 227.2 | 248 | 8.3 |
32 | 208.5 | 231 | 9.7 |
39 | 200.4 | 214 | 6.3 |
Average error | 7.1 |
Distance from weld center(mm) | Temperature from FEA (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 450.5 | 458 | 1.6 |
15 | 335.1 | 364 | 7.9 |
26 | 257.6 | 280 | 8.0 |
32 | 228.5 | 251 | 8.9 |
39 | 208.2 | 228 | 8.6 |
Average error | 7.0 |
Table 7 Error analysis for weld schedule Case-2 along transverse direction
Distance from weld center(mm) | Temperature from FEA (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 450.5 | 458 | 1.6 |
15 | 335.1 | 364 | 7.9 |
26 | 257.6 | 280 | 8.0 |
32 | 228.5 | 251 | 8.9 |
39 | 208.2 | 228 | 8.6 |
Average error | 7.0 |
Weld schedule | Rotational speed, \(N\)(rpm) | Weld speed, v (mm/s) | Total friction energy (J) | Total plastic energy (J) | Total energy (J) | \(\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total }}\,{\text{energy}}}}\times\) 100% |
---|---|---|---|---|---|---|
Case-1 | 350 | 1.27 | 4.62 × 104 | 4.76 × 103 | 5.09 × 104 | 9.4% |
Case-2 | 350 | 2.54 | 4.92 × 104 | 6.30 × 103 | 5.55 × 104 | 11.4% |
Table 8 Plastic/total energy ratio of different weld schedules
Weld schedule | Rotational speed, \(N\)(rpm) | Weld speed, v (mm/s) | Total friction energy (J) | Total plastic energy (J) | Total energy (J) | \(\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total }}\,{\text{energy}}}}\times\) 100% |
---|---|---|---|---|---|---|
Case-1 | 350 | 1.27 | 4.62 × 104 | 4.76 × 103 | 5.09 × 104 | 9.4% |
Case-2 | 350 | 2.54 | 4.92 × 104 | 6.30 × 103 | 5.55 × 104 | 11.4% |
Plunge rate (mm/s) | Rotational speed, \(N{ }\)(rpm) | Weld speed, v(mm/s) | Total frictional energy (J) | Change in frictional energya | Total plastic energy (J) | Change in plastic energya | Total energy | \(\left( {\frac{\text{Total plastic energy}}{\text{Total energy}}} \right)\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.4 | 450 | 1.27 | 4.76 × 104 | 3.0% | 5.91 × 103 | 24.2% | 5.35 × 104 | 11.04% |
0.4 | 350 | 1.27 | 4.62 × 104 | Base1 | 4.76 × 103 | Base1 | 5.09 × 104 | 9.35% |
0.4 | 200 | 1.27 | 3.70 × 104 | 19.9% | 1.52 × 103 | 68.1% | 3.85 × 104 | 3.94% |
Table 9 Synopsis of energies for various rotational speeds
Plunge rate (mm/s) | Rotational speed, \(N{ }\)(rpm) | Weld speed, v(mm/s) | Total frictional energy (J) | Change in frictional energya | Total plastic energy (J) | Change in plastic energya | Total energy | \(\left( {\frac{\text{Total plastic energy}}{\text{Total energy}}} \right)\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.4 | 450 | 1.27 | 4.76 × 104 | 3.0% | 5.91 × 103 | 24.2% | 5.35 × 104 | 11.04% |
0.4 | 350 | 1.27 | 4.62 × 104 | Base1 | 4.76 × 103 | Base1 | 5.09 × 104 | 9.35% |
0.4 | 200 | 1.27 | 3.70 × 104 | 19.9% | 1.52 × 103 | 68.1% | 3.85 × 104 | 3.94% |
Fig. 18 Variation of \(\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total}}\,{\text{energy}}}}\) with time for different rotational speeds (plunge rate = 0.4 mm/s, v = 1.27 mm/s)
Plunge rate (mm/s) | Rotational speed, \({ }N{ }\)(rpm) | Weld speed, v(mm/s) | Total friction energy (J) | Change in frictional energyb | Total plastic energy (J) | Change in plastic energyb | Total energy | \(\left( {\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total }}\,{\text{energy}}}}} \right)\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.4 | 350 | 2.54 | 4.92 × 104 | 0.8% | 6.30 × 103 | 20.7% | 5.55 × 104 | 11.35% |
0.4 | 350 | 1.69 | 4.88 × 104 | Base2 | 5.22 × 103 | Base2 | 5.40 × 104 | 9.66% |
0.4 | 350 | 1.27 | 4.62 × 104 | 5.3% | 4.76 × 103 | 8.8% | 5.09 × 104 | 9.35% |
Table 10 Synopsis of energies for various weld speeds
Plunge rate (mm/s) | Rotational speed, \({ }N{ }\)(rpm) | Weld speed, v(mm/s) | Total friction energy (J) | Change in frictional energyb | Total plastic energy (J) | Change in plastic energyb | Total energy | \(\left( {\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total }}\,{\text{energy}}}}} \right)\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.4 | 350 | 2.54 | 4.92 × 104 | 0.8% | 6.30 × 103 | 20.7% | 5.55 × 104 | 11.35% |
0.4 | 350 | 1.69 | 4.88 × 104 | Base2 | 5.22 × 103 | Base2 | 5.40 × 104 | 9.66% |
0.4 | 350 | 1.27 | 4.62 × 104 | 5.3% | 4.76 × 103 | 8.8% | 5.09 × 104 | 9.35% |
Fig. 21 Variation of \(\frac{{{\text{Total}}\,{\text{plastic}}\,{\text{energy}}}}{{{\text{Total }}\,{\text{energy}}}}\) with welding speed (\(N\) = 350 rpm, plunge rate = 0.4 mm/s)
Plunge rate (mm/s) | Rotational speed, \(N\)(rpm) | Weld speed, v (mm/s) | Total friction energy (J) | Change in frictional energyc | Total plastic energy (J) | Change in plastic energyc | Total energy | \(\frac{\text{Total plastic energy}}{\text{Total energy}}\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.3 | 350 | 1.27 | 2.89 × 104 | 24.6% | 5.53 × 103 | 37.2% | 3.44 × 104 | 16.07% |
0.4 | 350 | 1.27 | 2.32 × 104 | Base3 | 4.03 × 103 | Base3 | 2.72 × 104 | 14.81% |
0.6 | 350 | 1.27 | 1.67 × 104 | 28.0% | 2.88 × 103 | 28.5% | 1.95 × 104 | 14.76% |
Table 11 Synopsis of energies for various plunge rates
Plunge rate (mm/s) | Rotational speed, \(N\)(rpm) | Weld speed, v (mm/s) | Total friction energy (J) | Change in frictional energyc | Total plastic energy (J) | Change in plastic energyc | Total energy | \(\frac{\text{Total plastic energy}}{\text{Total energy}}\times\) 100% |
---|---|---|---|---|---|---|---|---|
0.3 | 350 | 1.27 | 2.89 × 104 | 24.6% | 5.53 × 103 | 37.2% | 3.44 × 104 | 16.07% |
0.4 | 350 | 1.27 | 2.32 × 104 | Base3 | 4.03 × 103 | Base3 | 2.72 × 104 | 14.81% |
0.6 | 350 | 1.27 | 1.67 × 104 | 28.0% | 2.88 × 103 | 28.5% | 1.95 × 104 | 14.76% |
|
[1] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[2] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[3] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[4] | Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326. |
[5] | Fengjiao Niu, Jianghua Chen, Cuilan Wu, Jing Wu, Xiandong Xu, Pan Xie, Xiongwei Yu. Improved Properties in Relation to Fine Precipitate Microstructures Tailored by Combinatorial Processes in an Al-Cu-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1527-1534. |
[6] | Xiong-Wei Yu, Jiang-Hua Chen, Wen-Quan Ming, Xiu-Bo Yang, Tian-Tian Zhao, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu. Revisiting the Hierarchical Microstructures of an Al-Zn-Mg Alloy Fabricated by Pre-deformation and Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1518-1526. |
[7] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[8] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[9] | Wei-Ning Shi, Hai-Fei Zhou, Xin-Fang Zhang. Effects of Al8Cu4Er Phase on Corrosion Behavior of Al-Cu-Mg alloy with Er addition [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1379-1387. |
[10] | Zhixiong Zhu, Xingxu Jiang, Gang Wei, Xiaogang Fang, Zhihong Zhong, Kuijing Song, Jian Han, Zhengyi Jiang. Influence of Zn Content on Microstructures, Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1369-1378. |
[11] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
[12] | Bin He, Lei Cui, Dong-Po Wang, Hui-Jun Li, Chen-Xi Liu. Microstructure and Mechanical Properties of RAFM-316L Dissimilar Joints by Friction Stir Welding with Different Butt Joining Modes [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 135-146. |
[13] | Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182. |
[14] | Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12. |
[15] | Z. W. Wang, G. M. Xie, D. Wang, H. Zhang, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructural Evolution and Mechanical Behavior of Friction-Stir-Welded DP1180 Advanced Ultrahigh Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 58-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||