Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (9): 869-883.DOI: 10.1007/s40195-016-0466-2
Special Issue: Friction Stir Welding In AMSE 2015-2017; 2016-2017铝合金专辑
• Orginal Article • Previous Articles Next Articles
Saad B. Aziz1(),Mohammad W. Dewan1,Daniel J. Huggett1,Muhammad A. Wahab1(
),Ayman M. Okeil2,T. Warren Liao1
Received:
2016-04-01
Online:
2016-09-10
Published:
2016-11-04
Saad B. Aziz,Mohammad W. Dewan,Daniel J. Huggett,Muhammad A. Wahab,Ayman M. Okeil,T. Warren Liao. Impact of Friction Stir Welding (FSW) Process Parameters on Thermal Modeling and Heat Generation of Aluminum Alloy Joints[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 869-883.
Add to citation manager EndNote|Ris|BibTeX
Si | Fe | Cu | Mn | Mg | V | Zn | Ti | Zr |
---|---|---|---|---|---|---|---|---|
0.20 | 0.30 | 6.8 | 0.40 | 0.02 | 0.15 | 0.10 | 0.10 | 0.25 |
Table 1 Chemical composition of the workpiece (AA2219)
Si | Fe | Cu | Mn | Mg | V | Zn | Ti | Zr |
---|---|---|---|---|---|---|---|---|
0.20 | 0.30 | 6.8 | 0.40 | 0.02 | 0.15 | 0.10 | 0.10 | 0.25 |
Temperature (°C) | Friction coefficient |
---|---|
25 | 0.4 |
100 | 0.4 |
200 | 0.4 |
300 | 0.35 |
400 | 0.25 |
420 | 0.25 |
543 | 0.01 |
Table 3 Temperature-dependent friction coefficient used in the model
Temperature (°C) | Friction coefficient |
---|---|
25 | 0.4 |
100 | 0.4 |
200 | 0.4 |
300 | 0.35 |
400 | 0.25 |
420 | 0.25 |
543 | 0.01 |
Density of workpiece, \({ \rho }\)(kg/ \({\text{m}}^{3} )\) | Density of tool, \({ \rho }_{{\mathbf{t}}}\)(kg/ \({\text{m}}^{3} )\) | Thermal conductivity of the tool, \({k}_{{\mathbf{t}}}\)(W/m2 °C) | Specific capacity of tool, \({c}_{{\mathbf{t}}}\) (J/kg/°C) | Melting temperature of workpiece (°C) |
---|---|---|---|---|
2840 | 7800 | 24.4 | 460 | 543 |
Table 4 Material properties used in the model [36]
Density of workpiece, \({ \rho }\)(kg/ \({\text{m}}^{3} )\) | Density of tool, \({ \rho }_{{\mathbf{t}}}\)(kg/ \({\text{m}}^{3} )\) | Thermal conductivity of the tool, \({k}_{{\mathbf{t}}}\)(W/m2 °C) | Specific capacity of tool, \({c}_{{\mathbf{t}}}\) (J/kg/°C) | Melting temperature of workpiece (°C) |
---|---|---|---|---|
2840 | 7800 | 24.4 | 460 | 543 |
Rotational speed, \({ \omega }\) (rpm) | Travel speed, V (mm/s) | Plunge force,\({ F}_{{{Z }}}\) (kN) |
---|---|---|
350 | 1.27 | 12.455 |
350 | 1.27 | 15.568 |
350 | 1.27 | 21.351 |
Table 5 Different weld schedule for temperature verification
Rotational speed, \({ \omega }\) (rpm) | Travel speed, V (mm/s) | Plunge force,\({ F}_{{{Z }}}\) (kN) |
---|---|---|
350 | 1.27 | 12.455 |
350 | 1.27 | 15.568 |
350 | 1.27 | 21.351 |
Fig. 15 Comparison between temperature histories of thermocouples and FEA results at y = 42.36 mm, z = 26 mm location (V = 1.27 mm/s; ω = 350 rpm; Fz = 12.455 kN)
Fig. 16 Comparison between temperature histories of thermocouples and FEA results at y = 42.36 mm, z = 26 mm location (V = 1.27 mm/s; \(\omega =\) 350 rpm; Fz = 15.568 kN)
Fig. 17 Comparison between temperature histories of thermocouples and FEA results at y = 42.36 mm, z = 26 mm location (V = 1.27 mm/s; ω = 350 rpm; Fz = 21.351 kN)
Fig. 20 Comparison of temperature variations between experimental and simulation data along transverse direction (V = 1.27 mm/s; \(\omega =\) 350 rpm; Fz = 12.455 kN)
Fig. 21 Comparison of temperature variations between experimental and simulation data along transverse direction (V = 1.27 mm/s; ω = 350 rpm; Fz = 15.568 kN)
Fig. 22 Comparison of temperature variation between experimental and simulation data along transverse direction (V = 1.27 mm/s; \(\omega =\) 350 rpm; Fz = 21.351 kN)
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 422 | 418 | 0.96 |
15 | 354 | 342 | 3.51 |
26 | 262 | 248 | 5.64 |
32 | 237 | 225 | 5.30 |
39 | 220 | 212 | 3.77 |
47 | 213 | 208 | 2.40 |
Average error | 3.60 |
Table 6 Error analysis for Fz = 12.455 kN, ω = 350 rpm, V = 1.27 mm/s weld schedule
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 422 | 418 | 0.96 |
15 | 354 | 342 | 3.51 |
26 | 262 | 248 | 5.64 |
32 | 237 | 225 | 5.30 |
39 | 220 | 212 | 3.77 |
47 | 213 | 208 | 2.40 |
Average error | 3.60 |
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 431.0 | 440 | 2.04 |
15 | 362.3 | 360 | 0.64 |
26 | 288.9 | 280 | 3.18 |
32 | 255.3 | 252 | 1.31 |
39 | 220.8 | 230 | 4.00 |
47 | 214.0 | 216 | 0.39 |
Average error | 2.02 |
Table 7 Error analysis for Fz = 15.568 kN, ω = 350 rpm, V = 1.27 mm/s weld schedule
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 431.0 | 440 | 2.04 |
15 | 362.3 | 360 | 0.64 |
26 | 288.9 | 280 | 3.18 |
32 | 255.3 | 252 | 1.31 |
39 | 220.8 | 230 | 4.00 |
47 | 214.0 | 216 | 0.39 |
Average error | 2.02 |
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 458.66 | 462 | 0.72 |
15 | 398.56 | 403 | 1.10 |
26 | 298.56 | 304 | 1.79 |
32 | 260.4 | 265 | 1.73 |
39 | 244.65 | 252 | 2.91 |
47 | 232.04 | 238 | 2.50 |
Average error | 1.79 |
Table 8 Error analysis for Fz = 21.351 kN, ω = 350 rpm, V = 1.27 mm/s weld schedule
Distance (mm) | Temperature from FEA analysis (°C) | Temperature from experiment (°C) | Absolute error (%) |
---|---|---|---|
0 | 458.66 | 462 | 0.72 |
15 | 398.56 | 403 | 1.10 |
26 | 298.56 | 304 | 1.79 |
32 | 260.4 | 265 | 1.73 |
39 | 244.65 | 252 | 2.91 |
47 | 232.04 | 238 | 2.50 |
Average error | 1.79 |
Rotational speed, \({\omega }\)(rpm) | Traverse speed, V (mm/s) | Plunge force, \({ F}_{{Z}}\) (kN) | Frictional energy (J) | Plastic energy (J) | Total energy (J) |
---|---|---|---|---|---|
350 | 1.27 | 21.351 | 1.35 × 106 | 1.25 × 103 | 1.35125 × 106 |
Table 9 Friction and plastic dissipation energy for weld schedule plunge force 21.351 kN, rotation rate 350 rpm, and traverse speed 1.27 mm/s
Rotational speed, \({\omega }\)(rpm) | Traverse speed, V (mm/s) | Plunge force, \({ F}_{{Z}}\) (kN) | Frictional energy (J) | Plastic energy (J) | Total energy (J) |
---|---|---|---|---|---|
350 | 1.27 | 21.351 | 1.35 × 106 | 1.25 × 103 | 1.35125 × 106 |
Rotational speed, \({\omega}\) (rpm) | Traverse speed, V (mm/s) | Plunge force, \({ F}_{{Z}}\), (kN) | Frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
350 | 1.27 | 12.455 | 1.04 × 106 | 22.96% |
350 | 1.27 | 15.568 | 1.06 × 106 | 21.48% |
350 | 1.27 | 21.351 | 1.35 × 106 | Base1 |
Table 10 Summary of friction dissipation energies for various plunge forces
Rotational speed, \({\omega}\) (rpm) | Traverse speed, V (mm/s) | Plunge force, \({ F}_{{Z}}\), (kN) | Frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
350 | 1.27 | 12.455 | 1.04 × 106 | 22.96% |
350 | 1.27 | 15.568 | 1.06 × 106 | 21.48% |
350 | 1.27 | 21.351 | 1.35 × 106 | Base1 |
Rotational speed, \({\omega}\), (rpm) | Traverse speed, V (mm/s) | Plunge force, \({F}_{{Z}}\), (kN) | Total frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
200 | 2.539 | 26.68 | 3.09 × 105 | 80.06% |
300 | 2.539 | 26.68 | 1.05 × 106 | 32.25% |
450 | 2.539 | 26.68 | 1.55 × 106 | Base2 |
Table 11 Summary of friction dissipation energies for various rotational speeds
Rotational speed, \({\omega}\), (rpm) | Traverse speed, V (mm/s) | Plunge force, \({F}_{{Z}}\), (kN) | Total frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
200 | 2.539 | 26.68 | 3.09 × 105 | 80.06% |
300 | 2.539 | 26.68 | 1.05 × 106 | 32.25% |
450 | 2.539 | 26.68 | 1.55 × 106 | Base2 |
Rotational speed, \({\omega}\), (rpm) | Travel speed, V (mm/s) | Plunge force, \({F}_{{Z}}\), (kN) | Total frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
300 | 3.386 | 26.68 | 1.05 × 106 | 5.40% |
300 | 2.539 | 26.68 | 1.06 × 106 | 4.50% |
300 | 1.693 | 26.68 | 1.11 × 106 | Base3 |
Table 12 Summary of total friction and plastic dissipation energies for various travel speed
Rotational speed, \({\omega}\), (rpm) | Travel speed, V (mm/s) | Plunge force, \({F}_{{Z}}\), (kN) | Total frictional energy (J) | Frictional energy percentage increasea |
---|---|---|---|---|
300 | 3.386 | 26.68 | 1.05 × 106 | 5.40% |
300 | 2.539 | 26.68 | 1.06 × 106 | 4.50% |
300 | 1.693 | 26.68 | 1.11 × 106 | Base3 |
|
[1] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[2] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[3] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[4] | Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326. |
[5] | Xiong-Wei Yu, Jiang-Hua Chen, Wen-Quan Ming, Xiu-Bo Yang, Tian-Tian Zhao, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu. Revisiting the Hierarchical Microstructures of an Al-Zn-Mg Alloy Fabricated by Pre-deformation and Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1518-1526. |
[6] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[7] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[8] | Fengjiao Niu, Jianghua Chen, Cuilan Wu, Jing Wu, Xiandong Xu, Pan Xie, Xiongwei Yu. Improved Properties in Relation to Fine Precipitate Microstructures Tailored by Combinatorial Processes in an Al-Cu-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1527-1534. |
[9] | Wei-Ning Shi, Hai-Fei Zhou, Xin-Fang Zhang. Effects of Al8Cu4Er Phase on Corrosion Behavior of Al-Cu-Mg alloy with Er addition [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1379-1387. |
[10] | Zhixiong Zhu, Xingxu Jiang, Gang Wei, Xiaogang Fang, Zhihong Zhong, Kuijing Song, Jian Han, Zhengyi Jiang. Influence of Zn Content on Microstructures, Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1369-1378. |
[11] | Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182. |
[12] | Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12. |
[13] | Z. W. Wang, G. M. Xie, D. Wang, H. Zhang, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructural Evolution and Mechanical Behavior of Friction-Stir-Welded DP1180 Advanced Ultrahigh Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 58-66. |
[14] | Y. Z. Li, Y. N. Zan, Q. Z. Wang, B. L. Xiao, Z. Y. Ma. High-Speed Friction Stir Welding of T6-Treated B4Cp/6061Al Composite [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 67-74. |
[15] | Zhao Zhang, Zhi-Jun Tan, Jian-Yu Li, Yu-Fei Zu, Jian-Jun Sha. Integrated Modeling of Process-Microstructure-Property Relations in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 75-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||