Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (2): 140-149.DOI: 10.1007/s40195-016-0370-9
Special Issue: 2016年钢铁材料专辑
• Orginal Article • Previous Articles Next Articles
Fu-Yuan Dong, Peng Zhang(), Jian-Chao Pang, Qi-Qiang Duan, Yi-Bin Ren, Ke Yang, Zhe-Feng Zhang(
)
Received:
2015-08-17
Revised:
2015-12-02
Online:
2016-01-18
Published:
2016-02-20
Fu-Yuan Dong, Peng Zhang, Jian-Chao Pang, Qi-Qiang Duan, Yi-Bin Ren, Ke Yang, Zhe-Feng Zhang. Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steels Subjected to Equal-Channel Angular Pressing[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140-149.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Si | Cr | N | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
HNSS-65 | 0.017 | 15.7 | 0.28 | 18.24 | 0.83 | 2.26 | 0.005 | 0.003 |
HNSS-83 | 0.044 | 15.8 | 0.18 | 18.62 | 0.65 | 2.78 | 0.013 | 0.004 |
HNSS-99 | 0.020 | 16.1 | 0.31 | 17.98 | 0.99 | 2.27 | 0.005 | 0.003 |
Table 1 Chemical compositions of austenitic stainless steels (wt%)
C | Mn | Si | Cr | N | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
HNSS-65 | 0.017 | 15.7 | 0.28 | 18.24 | 0.83 | 2.26 | 0.005 | 0.003 |
HNSS-83 | 0.044 | 15.8 | 0.18 | 18.62 | 0.65 | 2.78 | 0.013 | 0.004 |
HNSS-99 | 0.020 | 16.1 | 0.31 | 17.98 | 0.99 | 2.27 | 0.005 | 0.003 |
Fig. 1 a Schematic illustration of a billet before and after ECAP for a single pressing through the die; b illustration of billet for ECAP and the coordinate systems; c illustration of tensile specimen; d selected positions for tensile specimens on the transverse section of the ECAP billet
Fig. 3 Microstructure of the HNSS-83 steel characterized by EBSD: a, b at the top of the billet after ECAP; c, d at the bottom of the billet after ECAP
Fig. 4 a, b Activation of the limited slip systems with the planar gliding of dislocations and the Taylor lattice formation; c, d dissociated partial dislocations with the wide stacking fault; e, f formation of the HDDWs and microbands
Fig. 5 TEM micrographs of the deformation microstructure of HNS-83 steels after one ECAP pass: a a higher magnification observation of a nanotwin bundle; b twin intersections; c-e the nanotwined regions with shear bands; f twin-matrix lamellae are vanished within the shear band
Fig. 6 a-c Typical tensile engineering stress-strain curves of the samples at different locations of the billets; d-emechanical properties, including YS, UTS, and UE, as a function of the N content
Distance from center (mm) | -2.25 | -0.75 | 0.75 | 2.25 | |
---|---|---|---|---|---|
HNSS-65 | YS (0.2%) (MPa) | 950 | 1030 | 1132 | 1201 |
UTS (MPa) | 1151 | 1121 | 1214 | 1303 | |
UE (%) | 13.7 | 7.87 | 1.91 | 1.59 | |
HNSS-83 | YS (0.2%) (MPa) | 1005 | 1087 | 1211 | 1264 |
UTS (MPa) | 1233 | 1207 | 1302 | 1385 | |
UE (%) | 15.6 | 8.91 | 3.08 | 1.76 | |
HNSS-99 | YS (0.2%) (MPa) | 1046 | 1105 | 1277 | 1345 |
UTS (MPa) | 1281 | 1257 | 1343 | 1412 | |
UE (%) | 17.6 | 13.4 | 3.78 | 1.83 |
Table 2 Tensile properties of three HNS samples at different locations of the ECAP billets
Distance from center (mm) | -2.25 | -0.75 | 0.75 | 2.25 | |
---|---|---|---|---|---|
HNSS-65 | YS (0.2%) (MPa) | 950 | 1030 | 1132 | 1201 |
UTS (MPa) | 1151 | 1121 | 1214 | 1303 | |
UE (%) | 13.7 | 7.87 | 1.91 | 1.59 | |
HNSS-83 | YS (0.2%) (MPa) | 1005 | 1087 | 1211 | 1264 |
UTS (MPa) | 1233 | 1207 | 1302 | 1385 | |
UE (%) | 15.6 | 8.91 | 3.08 | 1.76 | |
HNSS-99 | YS (0.2%) (MPa) | 1046 | 1105 | 1277 | 1345 |
UTS (MPa) | 1281 | 1257 | 1343 | 1412 | |
UE (%) | 17.6 | 13.4 | 3.78 | 1.83 |
Fig. 7 a Values of the Vickers microhardness for HNS steels recorded along the Z-direction on the cross-sectional plane after ECAP; b, c mechanical properties including YS, UTS, and UE, as a function of the distance from center of the billets
Fig. 9 Relationship between UTS and UE of HNS steels after ECAP, showing the effects of increasing N content and SPD processing on the mechanical properties
Fig. 10 a-c Typical bright-field TEM images and corresponding SAED patterns (insets) for the deformation twins in the ECAP-processed samples: a HNSS-65; b HNSS-83; c HNSS-99; d-f statistical distributions of T/M lamellar thickness corresponding to a-c
Fig. 11 a Influence of adding N on the twinning stress (σ t) and the dislocation-solute interaction (σ y), leading to higher twin density; b enhanced strength-ductility synergy obtained by increasing twin density
[1] | G. Gavriljuk, H. Berns,Berlin, 1999) |
[2] | Y. Muratas, E. Ohash, Y. Uematsu, ISIJ Int. 33, 711(1993) |
[3] | M.L.G. Acta Metall. 35, 1853(1987) |
[4] | J.H. Park, M. Kanda, N. Tsuchida, Y. Tomota, J. Jpn. Inst. Met.69, 867(2005) |
[5] | V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatslaya, A.Sozinov, Mater. Sci. Eng. A 271, 14 (1999) |
[6] | K.I.D.Metall. Mater. Trans. A 34, 1821 (2003) |
[7] | I. Karaman, H. Sehitoglu, H.J. Maier, Y.I. Chumlyakov, Acta Mater. 49, 3919(2001) |
[8] | I.V. Kireeva, N.V. Luzginova, Phys. Met. Metall. 94, 508(2002) |
[9] | I.V. Kireeva, N.V. Luzginova, Y.I. Chumlyakov, I. Karaman,B.D. Lichter, J. Phys. IV France 115, 223 (2004) |
[10] | R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881(2006) |
[11] | R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103(2000) |
[12] | C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang, Mater.Sci. Eng. A 485, 643 (2008) |
[13] | F.Y. Dong, P. Zhang, J.C. Pang, D.M. Chen, K. Yang, Z.F.Zhang, Mater. Sci. Eng. A 587, 185 (2013) |
[14] | H.T. Wang, N.R. Tao, K. Lu, Acta Mater. 60, 4027(2012) |
[15] | F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059(2012) |
[16] | C. Donadille, R. Valle, P. Dervin, R. Penelle, Acta Metall.Mater. 37, 1547(1989) |
[17] | C.X. Huang, G. Yang, B. Deng, S.D. Wu, S.X. Li, Z.F. Zhang,Philos. Mag. 87, 4949(2007) |
[18] | V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1989) |
[19] | D. Khulmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989) |
[20] | B. Bay, N. Hansen, D. Khulmann-Wilsdorf, Mater. Sci. Eng. A 113, 385 (1989) |
[21] | A.S. Hamada, L.P. Karjalainen, M.C. Somani, Mater. Sci. Eng.A 467, 114 (2007) |
[22] | J. Hirsch, K. Lucke, M. Hatherly, Acta Metall. 36, 2905(1988) |
[23] | M.A. Meyers, K.K. Chawla, NJ, 1999) |
[24] | U.F. Kocks, J. Eng. Mater. Technol. 98, 76(1976) |
[25] | W. Christian, S. Mahajant, Prog. Mater. Sci. 39, 1(1995) |
[26] | A. Shan, I.G. Moon, H.S. Ko, J.W. Park, Scr. Mater. 41, 353(1999) |
[27] | G.M. Owolabi, A.G. Odeshi, M.N.K.Mater. Sci. Eng. A 457, 114 (2007) |
[28] | E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, K. Lu, Appl.Phys. Lett. 85, 4932(2004) |
[29] | X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu,Z.F. Zhang, Appl. Phys. Lett. 92, 201915(2008) |
[30] | S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang,Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Mater. 57, 1586(2009) |
[31] | Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang,Mater. Sci. Eng. A 528, 4259 (2011) |
[32] | P. Zhang, S. Qu, M.X. Yang, G. Yang, S.D. Wu, S.X. Li, Z.F.Zhang, Mater. Sci. Eng. A 594, 309 (2014) |
[33] | T.H. Lee, C.S. Oh, S.J. Kim, S. Takaki, Acta Mater. 55, 3649(2007) |
[34] | L. Lu, M.L. Sui, K. Lu, Science 287, 1463 (2000) |
[35] | V.G. Gavriljuk, A.I. Tyshchenko, V.V. Bliznuk, I.L. Yakovieva,S. Riedner, H. Berns, Steel Res. Int. 79, 413(2008) |
[36] | P. Milliner, C. Solenthaler, P. Uggowitzer, M.O. Speidel, Mater.Sci. Eng. A 164, 164 (1993) |
[37] | J.W. Christian, S. Mahajan, Prog. Mater Sci. 39, 1(1995) |
[38] | T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58,3173(2010) |
[39] | V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1989) |
[40] | S.I. Hong, C. Laird, Acta Mater. 38, 1581(1990) |
[41] | H.K.D.H. Bhadeshia, R. Honeycombe, Oxford, 2006) |
[42] | S.D. Andrews, H. Sehitoglu, I. Karaman, J. Appl. Phys. 87, 2194 (2000) |
[43] | I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 60, 5791(2012) |
[1] | Xiaosheng Zhou, Hao Chen, Chenxi Liu, Yongchang Liu. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 187-195. |
[2] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[3] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[4] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[5] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[6] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[7] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[8] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[9] | Rendong Liu, Zhiyuan Liang, Li Lin, Mingxin Huang. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 169-173. |
[10] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[11] | Biquan Xiao, Jiangfeng Song, Hua Zhao, Aitao Tang, Qiang Liu, Bin Jiang, Shitao Dou, Fusheng Pan. Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 227-238. |
[12] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[13] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[14] | Xiaoqi Han, Lizhuang Yang, Naiqin Zhao, Chunnian He. Copper-Coated Graphene Nanoplatelets-Reinforced Al-Si Alloy Matrix Composites Fabricated by Stir Casting Method [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 111-124. |
[15] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||